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ABSTRACT 

Estimating the parameters for a constant amplitude, 

polynomial-phase signal with additive Gaussian noise is 
considered. The difficulty in this problem is that there 
are many unobserved integers when a linear regression 
model is used for wrapped phases [I]. Analysing the 
least squares target function based on the regression 

model, we use the differencing approach [3] to simplify 

it. Thus a tree-search algorithm can be used to find the 
solution of the least squares problem. To reduce the 
computational complexity, statistical inference meth- 
ods are applied. Then an attractive recursive algorithm 
is derived. Simulation results show that this algorithm 
works at a lower SNR than that for existing methods. 

1. INTRODUCTION 

Estimating the coefficients of a polynomial-phase signal 

in the presence of noise has arisen from many applica- 
tions in signal processing [l-6]. Assume that we have 

observations 

a 
= Aei c;=, ejtj 

+ nt, t = 0,1,2 ,...) T-l, 

where A is a constant, 0 = [es, . . . . $1 is the unknown 
parameter vector to be estimated, and {nt} is a com- 
plex white normal sequence with mean zero and vari- 
ance 2~7:. For estimating 0 uniquely, we have to place 
some constraints. Since eis is a periodic function in 27r, 
and since for any integers kj here exist rationals oj’s 
such that 

2k,r 
m-l 

7tm + 2n c ajd = 0 (mod 27r). (1) 
77%. j=O 

For example, rt + mt2 = t(t + 1)~ = 0 (mod 2s). Then 

[8,, . . . . 8, + %, 0,-i + c~,-~, . . . . 8s + as] corresponds 
to the same observations as 0, Thus, we ask 

T <8j < F, -j!- 3! 
j = O,l, . . . (2) 

This problem has received considerable attention. 
A direct approach is applying the linear regression tech- 
nique to unwrapped signals [l, 23. However, the exist- 

ing unwrapping methods may not work in the presence 
of noise. To avoid unwrapping, differencing in phase via 
the multiplication of suitable consecutive observations 

has been suggested [2-51. Unfortunately, multiplication 
introduces a new noise term to the estimation problem 
(see (4) in [S]). This term can only be ignored when 
the SNR is high. The theoretical analysis as well as 
the simulation in [S] show that this approach may be 
efficient (attain the Cramer-Rae lower bound) at SNR 

higher than 20db only. 
The difficulty of this problem is that there are many 

unobserved variables. Based on the observations, we 

can only obtain the wrapped phase of zt: 

Im zt 
arctan Re zt , 

i 3 

W4 2 0, 

Yt = arctan i: 1’ + 7r, 
Im z: 

Re(zt) < 0, Im (a) > 0, 

arctan Re J t - 7r, Re(zt) < 0, Im (.zt) < 0 

(3) 
which is distributed on [-n, X] . The unwrapped phase 

of zt is related to yt through an unobserved integer 

process zt: 

P 

Yt + 2ztn = ht = C ejtj + Ut, t = 0, I, . . . . T-i, (4) 
j=O 

where ‘tit is the perturbation. According to [l], {ut} 
may be assumed to be a white normal sequence with 

mean zero and variance $ when the SNR is not too 
low. Thus, if we know {zt, t = 0, 1, . . . . T-l}, standard 
linear regression analysis can be used for estimating 

the parameters 0:s and the variances of the estimators 
attain the Cramer-Rao lower bound [l]. 

In this paper, we combine both regression and dif- 
ferencing techniques with the least squares criterion to 
estimate {zt, t = O,l, . . . . T-l}. To determine the {zt} 

that maximises the likelihood function among all pos- 
sible integer sequences, we develop a stochastic tree 
search method for this problem. Using Levinson re 
cursion, we show that the levels in the tree needed to 



decide an xt can be fixed and do not depend on T. This 
avoids the increasing of computational complexity as T 
increases. Furthermore, we decide the branches (nodes) 
and leaves (ends) of the tree by statistical inference. 

This reduces the size of the tree, and hence the compu- 
tational complexity dramatically. Finally, we develop 
a very simple recursive algorithm to calculate the value 

of the target function at each node and leaf. 

In Section 2, we derive a target function in terms of 

only {xt , t = 01,2, . .., T-l} from the least squares cri- 

terion. To analyze this target function, a differencing 
technique is applied. This target function can then be 
rewritten as a sum of residual squares, where the kth 
residual depends on {xt, t = 0, 1,2, . . . . k} only. In Sec- 
tion 3, we develop a finite level searching tree based 

on statistical inference. Section 4 summarizes the al- 
gorithm and shows some simulation results. 

2. TARGET FUNCTION 

To solve the regression problem in (4), let 

XT = [x091, “‘, XT-I]’ and YT = [YO, YI, . . ..YT-I]’ 

need to consider the least squares problem 

2 

min min 
It’s Bj’S 

yt + 2xtlr - 

We 

(5) 

Under the normality of {ut} [l], this approach is equiv- 
alent to the maximum likelihood approach. The dou- 
ble minimization in (5) can be performed in two steps. 
First, for a given XT, the 0 yielding the minima is 

given by 

1 
0 = (H&HT)-~ H& (YT + 2~x77)) 

so we only need to choose XT to minimize 

(6) 

= (I k - HT (H&HT)-~ H&I (YT + 2~x77) 1 I2 . 

Notice that PT = I - HT (H&HT)-~ H& is the pro 
jection operator onto the linear space ST that is orthog- 
onal to the linear space spanned by the column vectors 
in HT. To investigate the matrix PT, we need to find 

a basis for ST. The differencing idea in [4, 5, 61 can be 

used for this purpose, but with a higher order. Let 

)...) (-l)p+‘, 6&l 

’ I 
T-k-p-2 

’ 

where k = 0, 1,2 , . . . . T-2. When p = 2, we have 

dk = -1 
I 

O,l,-3,3,-1,0 ,..., 0 , k=O,l,..., T-4. 

T-k-4 

Since they consist of the coefficients of the (p + l)th 

differencing operator VP+’ = (1 - B)p+‘, where B is 

the backshift operator, one can confirm that 

d& = 0, k = O,l,..., T-2, 

and so {do,dl, . . . . d~-~--a} is a basis of the (T-p-l)- 
dimensional Euclidean subspace ST. 

Based on {do, . . . . dk}, we can find a standard or- 
thogonal basis of ST : 

ek = 
dk - ~~~~fl) (ei+dk> ek-j 

II 
dk - c;?p+‘) (e;+&) ek-jll’ (7) 

where k = 0, 1, . . . . T-p-2. and a A b E min(a, b). We 
can then show that 

T-p-2 

PT = c ek& 

k=O 

and hence we choose XT to minimize 

II 
T-p-2 

c ekei (YT + %xT) 

k=o II 

2 T-p-2 

= c [ei (YT + 2rxT)]2. 
k=O 

(8) 

3. STOCHASTIC TREE-SEARCH 

Now we consider how to find the minima of (8) recur- 

sively. Let Ok = 9 
I/ 

dk - c;:p” (e;+dk) W-j 11 

and 

wk = ei (YT + %xT) 

ZZ 
di (YT f 2rxT) - ~$+‘) (e&dk) Wk-j 

ok 

(9) 

From (7) it is clear that Wk only depends on Yk+p+2 

and Xk+p+s. Also, suppose that Xk+ps-2 SatiSfieS (4), 



and let UT = [us, . . ..uT-11’ . Since dk is orthogonal to 
HT, we have 

‘t”k = 
dk (HT@ + UT) - z;ip+‘) (eimjdk) wk-j 

ok 

= 
C&UT - ~~~~“’ (Ci-jdk) wk-j 

7 
ffk 

and so {wk} is a white standard normal sequence. If we 
know Xk+p+l = [xc, . . . . xk+p]’ , with probability 0.999, 

xk+p+l should be one of the integers to satisfy ]Wk] < 
3.2905 . Thus, let 

where 8: = 
II 

dk - X$+1) (t&dk) ek+/l’,andthus 

0; (+q = ( i 1, ($q’ (-$m) =l. 

St 

ie. IDtat is a linear combination of dk, k = O,l, . . . . t; 
whi& is orthogonal to all dk, k = 0, 1, . . . . t-l and has 

norm one. Therefore, 

ck = f-(-l)j (‘:‘) (yk+j+h.xk+j) 

j=O 

kA(p+l) 

+(-l)p+lyk+,+l - c (&j&)%-j /ok. 

j=l 

According to (9), we have 

(ck - 3.2905) uk 
5 (-l)‘xk+p+l 5 

(ck + 3.2905) ck 

2n 2lT * 
(10) 

If there are nk integers satisfying (9), then co&& 

sponding to a given vector Xt+,+i is a tree branch 

x0 -,x1 + . . . +xk+p + ; . 

(nr) 
‘k+p+l 1 

(1) 
‘k+p+l 

In practice, we do not know Xk+p+l , and so we have 

to do the tree-search step by step. 

Firstly, we consider the initial values (x0, xi, . . . . xp} . 
From (2) and the consideration in the end of section 4, 

we take xk = 0, k = 0, 1, . . . . p. Then, we choose $!i 

according to (10). For each Xi:; = 
[ 
0, . . . . 0, xi:! 1 , we 

choose x:2;“‘, so on. Thus, we establish a searching 

tree and calculate the residual w$“j’) at each leaf 
(iI ,...,it) 

xp+t * 
Secondly, we consider how to end the treesearch at 

a certain depth of the tree. If we continue the above 
procedure for all samples, the computational complex- 
ity may be too high, with the number of leaves in the 
tree possibly increasing exponentially. Fortunately, the 

contribution of x$..ljt) to the residual w$$+~) de- 
creases to zero quickly as N increases. 

Let Dt = [do,dl, . . . dt], lYt = D;Dt, and at = 

[b,t 9 h-1 > ***, &,I, 11’. at satisfies Itat = [0, . . . . 0, sz]’ , 

The elements in et are the prediction coefficients of 

the MA (p + 1) series ut = Cgh=bp+‘) (-l)j (p:‘) Et-j, 

where et = ut-Proj{U,,n<k<t}ut. Since this MA (p + 1) 
is a purely non-deterministic series, we conclude that 

&+N,k -+ 0 for k = t + N, . . . . N, and 

sKN --+ 1 as N +oo. (12) 

Also, since w~~.,j’(j’+‘r’..tj’+N) = e~+N (yT + 27FXT) 

and (11,12), we can choose xp+t (jl ,“‘,jt) by minimizing 

,(i~,...~i*,) = y w; (xf(&-jk)) , 
p+t+N 

k=t+l 

(13) 

ie, we only need a fixed depth tree-search, say N, for 

deciding each xp+t. 
Thirdly, to further reduce the computational com- 

plexity, we may end certain branches before achieving 
the depth N. Indeed, if {xt} satisfies (4), Cy?k,,, wz 
should be a x; random variable, so if the value is not 

significant at a prespecified level, say 99.99%, we can 

“““‘1 delete X$ from the candidate list and not pro- 

ceed along this branch of the tree. 

4. ALGORITHM 

Let {Sk} be defined as in section 3, and 

T8 = (-1)8 ‘+e@ (p:‘) (;‘i). (14) 
j=a 

Puts~=rcandak,t=Oforallk<lort>kA(p+l). 
We calculate 

kA(p+l-t) 
4 - Cjzl ak-t,jak,t+j 

ak,t = 
Sk-t 

kA(p+l-t) 

5; = 7-0 - c d,j- (15) 
j=l 



Figure 1: Computational overhead. Average number of 
leaves per search vs time window. The window length 
is 30, with an overlap of 29. 

where t = k A (p + l), . . . . 1. We can then show that 

ck = 6 
n 

fJ-l)‘(p:‘) (?/k+j+2nxk+j) 

j=O 

Wp+l) 

f(-l)P+‘Yk+p+l - c (&-jdk)Wk-j . 

j=l 

Starting from the initial values xc = . . . = xp = 0, we 

choose x:2!, xf!$ ’ ***Y xp+N (‘I “““,) satisfying (10). The 

corresponding residuals can be obtained by 

wp,-.9ik) = (il,dh) + 

‘k 

(-l)~+‘A~f;;;;jL) (16) 

gn$k 

Let xi+N be the minima of (13), where gp+i is the (p+ 

l)th component of XG+N. Starting from xi = . . . = xp = 

0 and xr,+i = 2p+l, we repeat the above procedure for 

estimating 4,+2 and so on. 

Once we obtain the estimator XT, @ can be ob- 
tained by (6). However, we must satisfy the constraints 
in (2). If the estimators are out of the range, we correct 

them by subtracting y and 2okr respectively. 

Simulations have been done and part results are 

shown. The computational complexity is shown in fig- 
ure 1, while the mean square error (MSE) is compared 
to the Cramer-Rae bounds in figure 2. Compared with 
the results in [3,6], we can see significant improvements 
in the threshold for attaining the Cramer-Rae bound. 

Figure 2: Performance of Estimators. Inverse of MSE 
vs SNR in dB for (a): linear phase with T=24 and 100 

repetitions. (b): quadratic phase with T=lOO and 1000 
repetitions. Search depths are 20 and 40 respectively. 
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