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Abstract— The presence of non-linear devices in several com-
munication channels, such as satellite channels, causes distortions
of the transmitted signal. These distortions are more severe for
non-constant envelope modulations such as 16-QAM. Over the
last years Neural Networks (NN) have emerged as competitive
tools for linear and non-linear channel equalization. However,
their main drawback is often slow convergence speed which re-
sults in poor tracking capabilities. The present paper combines
simple NN structures with conventional equalizers. The NN
techniques are shown to efficiently approximate the optimal de-
cision boundaries which results in good symbol error rate (SER)
performance. The paper gives simulation examples (in the con-
text of satellite mobile channels) and compares neural network
approaches to classical equalization techniques.

I. INTRODUCTION

The worldwide growth of wireless mobile telecommunications
services requires the transmission of more and more data at high
rates over long distances. This involves the use of non-linear
amplifiers to improve the transmission channel efficiency. For
instance, Satellite Universal Mobile Telecommunication Sys-
tems (S-UMTS) links employ Travelling Wave Tube Amplifiers
(TWTA) and Solid State Power Amplifiers (SSPA). Such de-
vices cause severe distortions for the transmitted signal. There-
fore efficient equalizers are needed in order to overcome these
distortions.

Over the last decade Neural Network (NN) equalizers have
raised much interests (See [9] for an overview). Their non-linear
structures and good learning properties make them good can-
didates to solve the equalization of linear as well as non-linear
channels problem. Multilayer Perceptron (MLP) [6], [12] and
Radial Basis Function networks (RBF) [7], [8] were shown to
be optimal symbol-by-symbol equalizers with regard to Bayes
theory. Nevertheless their slow convergence speed does not
allow them to efficiently track time-varying channels such as
UMTS channels. Alternative approaches were proposed in [2],
[11], and [14]. Simple NN-based structures were combined to
conventional Linear Transversal Equalizers (LTE) or Decision
Feedback Equalizers (DFE) to form hybrid equalizers. In [2] a
particular MLP called LF-NLN (Linear Filter - Nonlinear Net-
work) was successfully applied to the equalization of a 4-QAM
S-UMTS channel. [14] proposed RBF networks as decision de-
vices for non-linear channels. Kohonen Self-Organizing Maps
(SOM) were also combined with DFE equalizers in [11] and [4].

The present paper proposes several NN structures and com-

pares their performance when applied to the equalization of a
16-QAM S-UMTS channel.

The paper is organized as follows: Section II describes non-
linear channels. In Section III several hybrid NN-based equaliz-
ers are presented. Section IV applies these equalizers to 16-QAM
Satellite-UMTS channels.

I1I. PROBLEM STATEMENT
A. Satellite Channel Model

Figure 1 gives a discrete equivalent model for a non-linear
transmission channel. The transmitted signal s(n) is filtered by
the uplink linear filter Hu.(2). Colored gaussian noise u(n) is
then added. The signal passes then through a memoryless non-
linear function f(.) (which represents the nonlinear amplifier
transfer function). The downlink is composed of a linear filter
Hy(z). The equalizer performs a non-linear function g(.) of the
delayed received sample X (n) = [z(n),z(n—1), ...,z(n—L+1)].
The purpose of the equalizer is to provide an estimation of the
transmitted signal.
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Figure 1 : Discrete equivalent model for non-linear channel
equalization.

The memoryless non-linear amplifier is modelled by a complex
gain G(r) = A(r).e’*™) depending only on the input signal
instantaneous power r°. We have used the Saleh’s analytical
model for the amplifier non-linearity [13]:

{ A= 2 1)
®(r) = 1555007

Two kinds of distortions result from the use of non-linear ampli-
fiers : phase wrapping and amplitude distortion. Let us consider
the channel described in Figure 1 with Hy(z) = H4(z) =1 and
f(.) represented by Saleh’s model. The optimal decision bound-
aries for 4-QAM and 16-QAM signals are derived from the esti-
mation of the probability density function of each transmitted
symbol (Figure 2). The downlink noise tends to mask the effect
of the non-linearity on the decision boundary for 4-QAM sig-
nals. Indeed, Figure 2-b shows that 15dB downlink noise makes
results in an optimal decision boundary which is linear (intersec-
tion of hyperplanes). This decision boundary can be achieved by
a simple sign operator. However, non-constant modulus mod-
ulations such as 16-QAM are more severely distorted by the
non-linearity. Figure 2-d shows that even in presence of down-
link noise, the optimal decision boundary cannot be achieved
by a threshold operator. Thus, more sophisticated non-linear
deviced are required.
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Figure 2 : Optimal decision boundaries: (a) (b) 4-QAM, (c)
(d) 16-QAM.

B. Satellite-UMTS Channel Model

The S-UMTS channel model used in our simulations is de-
scribed in Figure 3. The emission filter F} is an IIR square-root
raised cosine filter. Its bandwidth is limited to the symbol rate
Tis. This filter introduces intersymbol interference (ISI). In or-
der to add white noise in the signal bandwidth only in the uplink
and downlink, white gaussian noise is first filtered by an ellip-
tic low-pass filter F. with a very abrupt transition. The SNR
parameters of the channel correspond to the effective SNR in
the signal bandwidth. The signal is scaled by a gain factor be-
fore entering the amplifier. It enables to adjust the backoff of
the signal power compared to the saturation point of the am-
plifier. 0dB backoff was used for 4-QAM signals and —5dB for
16-QAM. The TWTA uses Saleh’s model (equation 1).
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Figure 3 : Satellite mobile communication channel model.

Line Of Sight (LOS) (i.e. with a direct path) communications
are considered. In the case of multipath mobile communica-
tions, the receiver gets time delayed replicas of the direct path.
These replicas are attenuated and multiplied by a Doppler noise.
The Doppler noise is obtained by filtering a complex gaussian
noise by a low-pass Doppler filter F;. The transfer function of
Fy is given in 2.
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where £ = 0.1 and wo = 2nf4. fa = fo2=et is the Doppler
frequency, f. is the carrier frequency (2.2GHz), vmop is the mo-
bile speed (up to 300km/h) and c is the light speed (3.10%m/s).
Once multiplied by the Doppler noise, each reflected path k
is filtered by a low-pass filter Cx. Cr models the time spread
caused by refractions on obstacles. The impulse response of C

decays exponentially : Cr(n) = e_"%, where T. is the sample
duration and T is the delay spread (10™%). In the following
simulations only one reflected path (which is delayed by 0.1s
and attenuated by 10dB) was considered. According to [5] this
corresponds to a suburban area transmission at low elevation
angle (around 15°).

III. NEURAL NETWORKS AS ADAPTIVE DECISION DEVICES

The decision device in LTE and DFE equalizers is usually a
hard limiter with two or more levels (depending on the modula-
tion). In this section we show how neural networks can improve
the decision process.

A. The LF-NLN

In [2] a particular MLP called LF-NLN was introduced. The
structure of the LF-NLN is given in Figure 4. An input linear
filter is followed by a memoryless non-linearity. The memoryless
non-linearity consists of a hidden layer with sigmoidal neurons.
The linear filter of the LF-NLN is supposed to deal with the
linear ISI and the memoryless non-linear network cancels the
remaining non-linear distortions. This NN structure was suc-
cessfully applied to satellite channel identification [10]. In [2]
the LF-NLN was shown to give very low MSE when applied
to a 4-QAM satellite channel. Its simple structure enables to
track time varying channels. This results in BER improvement
in non-stationary environment.
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Figure 4 : Linear Filter - Non-Linear Network equalizer.

The linear filter and non-linear network weights are adapted
by the real backpropagation algorithm. The complex version of
the LF-NLN and the generalization of the complex backpropa-
gation algorithm to the LF-NLN are detailed in [2]. The real
valued algorithm is given below :

o Forward Phase:

{ zi(n) = ZNil wiy(n).zy(n)
z3(n) = >l way(n).z4 (n)
zi(n) = f(3;_, wk;(n).zj(n)) ,Vk € {L,..,Nu}
{ yi(n) = Zgﬁl wi(n).zi(n)
)

y2(n) = 3.0 wik(n).zi(n

o Backpropagation:



3rd layer : d(n) = ( Z;gzg ) is the desired output,
Sy ( () ) _ ( ds(n) — 91 (n) )
e3(n) d2(n) — y2(n)
8n) = &(n)

{ wo(n + 1) = wi(n) + p(n).63(n).z3(n)
wi(n + 1) = wi,(n) + pu(n).63(n).xi(n)

,Vk €{1,..,Nn}
2nd layer : Vk € {1,.., Na},
2
ei(n) = Y wi(n)ei(n)
j=1
8i(n) = ei(n).f(a})

{ wgl(n +1) = w§1(n) + /LLFNLN(n).(Sg(n).m%(n)
wra(n + 1) = wia(n) + prrnvin(n).6;(n).z2(n)

1st layer :
Nh.
&) = Y wih(n)ei(n) ,V¥je{1,2}
=1
§'n) = &'(n)

{ wik(n +1)= wik (n) + /LLFNLN(n).(S%(n).mg(n)
wag(n + 1) = wor(n) + prrvin(n).62(n).zy(n)

,Vk €{1,..,Nn}

For non-constant modulus modulation schemes like 16-QAM,
[1] suggested to use the following activation function F'(.) for
an MLP, taking advantage of a priori information about the
transmitted signal:

T+ xo
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where zo is a threshold parameter, o is a slope steepness tuning
parameter and f(.) is the tanh function. The parameters used
in our simulations are zo = 0.62 and ¢ = 0.05. In the following
simulations the LF-NLN was used with F'(.) to equalize 16-QAM
signals. The algorithm is the same as described above with f(.)
and f’(.) respectively replaced by F(.) and F’(.).

B. The LTE-RBF

In [14] an RBF network with memory was used to improve
the decision device of a DFE in the case of non-linear channels.
In the case of satellite channel equalization it is difficult to get
precise channel state estimates because of non-linear distortions
as well as up-link noise and IIR filtering. Assuming that a
conventional linear or non-linear equalizer deals with the linear
ISI and cancels the effect of the memory, the RBF networks
needs to fight the memoryless non-linear distortion. For 4-QAM
signals the best fitted RBF has 4 neurons (as shown in Figure
5-a) and has 16 neurons for 16-QQ AM signals. More neurons may
help getting better boundaries approximations but would result
in poor tracking capabilities.
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Figure 5 : (a) LTE-RBF equalizer for 4-qam signals, (b)
LTE-SOM equalizer for 4-gam signals.

The LMS algorithm was used to adapt the LTE and RBF
weights. The RBF neurons are adapted with the k-mean clus-
tering algorithm :

k= arg(mkin |X(n) — Cr(n)|)

{ G+ =G50 wuanrte) [X(m) - O]
Ci(n+1) = Ci(n) WVi£k

It is usefull to update the centers with the Kohonen learning rule
(described below) as suggested in [3]. It prevents the neurons
centers from getting trapped in local minima.

C. The LTE-SOM

The decision device can be improved by using Kohonen Self
Organizing Maps (SOM). In [11] SOM were shown to compen-
sate for both corner collapse and lattice collapse non-linear ef-
fects. As shown in Figure 5-b, the SOM performs a ”winner-
takes-all” decision on the conventional equalizer (LTE or DFE)
output. Each neuron of the SOM is associated with a transmit-
ted symbol through a look-up table. For 4-QAM signals the
SOM has a 2-by-2 square topology. For 16-QAM signals it has
a 4-by-4 square topology.

The neurons of the SOM are adapted with the Kohonen learn-
ing rule:

k = arg(min [ X (n) — Ci(n)])
Ci(n+1) = Ci(n) + bz (n) [X(n) — Ci(n)] ,Vi € {1,..., N}

where O is the winning neuron, and hi;(n) is the neighborhood
kernel. The neighborhood function was chosen as an exponen-
tially decaying function. Not only the winning neuron is moved
towards the input vector, but also its neighbors. This helps
the SOM neurons fit the received signal constellation correctly.
For instance, it prevents one neuron from covering two or more
clusters by attracting the neighbors of this neuron in its region.
It ensures a better distribution of the neurons over the received
signal constellation. This is particularly useful when the topol-
ogy of the transmitted signal constellation is complicated (like
M-QAM with M > 4).

IV. ApPPLICATION TO S-UMTS CHANNELS

A. Decision Boundaries

The decision boundaries performed by the described NN for
16-QAM signals are given in Figure 6 (for 20dB uplink and
25dB downlink conditions). The SOM seems to give the best
approximation to the optimal decision boundaries (which were
described in Figure 2-c-d).
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Figure 6 : Decision boundaries performed by NN-based
memoryless decision devices: LF-NLN, LTE-RBF and
LTE-SOM.

B. Performance Comparison

The performance of NN equalizers applied to 4-QAM modu-
lations was studied in [2], [3], [11], [8]. In this paper we focus
on 16-QAM modulations.

For each equalizer, a preliminary study enabled to find out
the parameters (1. e. the number of neurons and the learn-
ing rates) the give the best trade off between computational
complexity and SER performance. Figure 7 gives the Symbol
Error Rates (SER) performance of the equalizers when applied
to the stationary S-UMTS link (i.e. time-invariant channel).
The LTE-SOM outperforms all equalizers. The LF-NLN gives
an SER performance which is very close to the LTE-SOM for
high downlink SNR. The LTE-RBF suffers from the bad shape
of the decision boundaries in the constellation center.
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Figure 7 : SER vs. downlink SNR with 20dB uplink SNR and
stationary channel.

Figure 8 gives the SER vs. downlink SNR performances for
the mobile satellite link (Vino» = 150km/h). The LTE-SOM
manages to track the channel variations and reaches 10 times
lower SER than the other equalizers. The LF-NLN is too slow
to confirm its good performance for the stationary channel.

V. CONCLUSION

The paper presented several neural network (NN) based struc-
tures for satellite UMTS channel equalization. Among all tested

NN-based equalizers, the LTE-SOM was shown to track the
channel variations and give the best approximation to the opti-
mal decision boundary. This makes it a very attractive device to
non-constant modulus signal equalization combining both sim-

plicity and efficiency.
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[11]

[12]

[13]

[14]

150km/h mobile speed.
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