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ABSTRACT

This paper addresses the problem of tracking of ob-
jects with complex shape and motion dynamics. The ap-
proach followed relies on multiple models based on Gaus-
sian mixtures and hidden Markov models. A tracking al-
gorithm derived from Nonlinear Filtering is presented and
illustrated in two situations. In the first, two points mov-
ing independently along a line are tracked, only one being
observed at each time. In the second, two dimensional ob-
jects are tracked, under severe shape deformations. Unlike
other multi-model approaches, the proposed method relies
on parametric techniques providing an efficient tool to up-
date shape and motion estimates.

1. INTRODUCTION

Algorithms for solving engineering problems relying on mul-
tiple models are increasingly finding applications in Signal
Processing and Control. This stems from the difficulties in-
herent to a reality (be it a process plant, a speech signal or
the image of a changing object) which is too difficult to be
modeled by a single model, simple enough to be managed.
Further, if the reality to be modeled undergoes transforma-
tions as time passes, hidden Markov models (HMM) |8] are
a possible way of taking this into account. Despite HMM'’s
present limitations (e. g. they poorly model the influence
of the remote past), they have the merit of leading to algo-
rithms with tractable complexity.

In Control, one can think of the problem of a process
working under a slowly varying operation condition. See
|7] for a recent reference among several others possible. In
Image Processing, image sequences of moving ob jects with
time-varying shape provide another class of examples. For
example, a car passing in a highway in front of a fixed cam-
era yields different shapes according to, say, the car is far
away and the front is mostly seen, or it is close and signifi-
cant parts of the side appear. A moving hand making signs
according to its shape provides another example. In both
cases, the images captured have a time varying structure,
each of the possibilities corresponding to a different model
in an alphabet.

This paper addresses the problem of tracking moving
objects with abrupt changes of shape or motion. The ap-
proach followed relies on multiple models based on Gaussian
mixtures and hidden Markov models. A tracking algorithm
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derived from Nonlinear Filtering is presented. This algo-
rithm is inspired in the work of Tugnait on the detection
and estimation of abruptly changing systems |11]|. Unlike
other approaches (e.g. the Condensation method recently
described in |2]) the proposed algorithm relies on a para-
metric model and provides an efficient tool to update the a
posteriori density even if the number of parameters is high.
In order to illustrate this algorithm, two situations are con-
sidered. The first situation is a synthetic example in order
to highlight the main features of the approach. It consists
of the tracking of two points independently moving along a
line, only one being observed at each time. In the second,
a two dimensional object with a changing shape is tracked
in a sequence of images.

2. PROBLEM STATEMENT

A simple model will be adopted to describe the shape of a
moving object with abrupt motion or shape changes. Let
My, ..., My be M shape matrices associated to M views
of a deformable object. Each view is defined as a sequence
of boundary points or as a spline curve with known control
points. Let o = (z1,...,ZN,Y1,--.,Yn) be the coordinates
of N features detected in the image (e.g., edge points) asso-
ciated with N model points. It will be assumed in the sequel
that o is an affine transform of one of the shape matrices,
corrupted by white Gaussian noise, i.e., (see the details in
)

Oy — that + Vg (1)
where a; is a vector of affine parameters, and its first deriva-
tives, g, € {1,..., M} is a model label, v; is a noise vector
with multivariate normal distribution, N (0, R) and

Cq = IBM% OJ (2)

is the observation matrix, B being an interpolation matrix
in the case of B-spline models, and the identity matrix in
the case of point models. It is assumed that a; is a random
process described by a stochastic difference equation and
the label sequence ¢; is a Markov chain.

Problem

Given a set of observations O = (o4, ..., 0;), detected
in a sequence of t images, we wish to estimate the motion
(affine) parameters a; and the model label g;.

This is a nonlinear filtering problem |3]. If the joint
probability density function conditioned on the observa-
tions p(ay, ¢;/O") is evaluated, the unknown parameters can



be estimated in a number of ways, e.g., using the MAP
method

(at, :) = arg maxp(az, ¢ /O") ()
at,qt

It will be assumed that a;,q: contain all the informa-
tion about the past needed to generate future observations.
Since a; is a continuous random variable and g¢; is discrete,
(at,q:) is denoted as a mixed-state.

If the model estimate, §;, is not needed, the pose param-
eters can be obtained by the maximization of the a posteri-
ori density conditioned on the observations, p(a;/O"). This
function is closely related to the joint density of the mixed-
state variables

Plar/0N) =3 plar, 4/ O") (4)

qi

The computation of p(a;/O") is addressed in the next
section assuming that a; is the output of a switched bank
of filters. This allows to express the optimal state distri-
bution as a Gaussian mixture with an (exponentially) in-
creasing number of components and provides a tree struc-
ture to compute the unknown parameters. A recursive
method is described to provide practical algorithms to per-
form these computations. The number of mixture compo-
nents increases with t. To overcome this difficulty, the op-
timal distribution is approximated by a Gaussian mixture
with a smaller number of modes. Strategies for complexity
reduction are addressed in section 4.

3. PROPAGATION OF CONDITIONAL DENSITY

Let us first address the estimation of a;, assuming that the
model sequence Q* is known. In the sequel we shall assume
that the state vector a; is the output of a first order random
equation

ay = AQt (o] + Wy (5)

where the characteristic polynomial of matrix A is strictly
Hurwitz and w; is a white vector with normal distribution
N(0,Q), uncorrelated with the observation noise v;. The
initial condition is also a random variable with normal dis-
tribution N (ag, P,). Equations (5,1) define a stochastic lin-
ear system. The estimation of the affine parameters, a,
from the present and past observations, O, is a well known
state estimation problem: the distribution of a; given O! is
N (a¢, Py), with a¢, Py updated by the Kalman filter equa-
tions. The MAP state estimate is a¢ .

When the model sequence is unknown, we have to com-
pute p(a;, @*/O") for all admissible sequences and obtain
P(a;/O") as the marginal density of this joint probability
distribution:

plai/O) = pla, Q°/0%) = Y " eqeplar/Q',0")  (6)
Qt

Qt

where Q' = (q1,...,¢;) is a model sequence and cge =
P(Q'/O%). The density p(a;/Q,0") is a normal density
function with mean and covariance updated by Kalman fil-
tering as discussed before. Therefore p(a;/O") is a mix-
ture of Gaussians, each of them being associated to a spe-
cific model sequence @’. Since all model sequences Q° €

aq Py

Time epochs

Figure 1: Computation of the mixture components

{1,..., M}* are allowed, the mixture will have M* compo-
nents. For example, if the observations are generated by
two models, the mixture will have 8 components at t=3.

The computation of the mean and covariance of each
component is organized in a tree structure where each branch
corresponds to an iteration of a Kalman filter (see fig. 1).
This optimal structure cannot be directly implemented and
some complexity reduction schemes have to be devised to
avoid the combinatorial explosion. This problem is ad-
dressed in section 4.

Sometimes, it is enough to assume that a single transi-
tion is allowed during a given time interval. In this case,
most of the tree paths are discarded and the number of
nodes increases linearly with the length of the interval. A
more drastic attitude is even adopted in control, see e. g.
|7], by assuming that the data is generated by the same
model in a sliding time interval. These approaches will not
be pursued here: Multi-model tracking will be addressed
with full generality allowing all possible transitions.

Consider now the computation of the mixing parame-
ters cge = P(Q*/O"). If the model sequence is a Markov
chain with known transition probabilities, T;;, the mixing
parameters can be recursively updated by |6]

CQt = kth,lth(Ot)cQtfl (7)

where G is a Gaussian density function and k is a constant,
obtained from the normalization condition > coe = 1. The
algorithm used to compute each tree node is summarized
in table 1. The following example illustrates the use of
switched models and the performance of the proposed algo-
rithm with synthetic data.

Example

Consider two bees flying on a line with independent
random motions (Fig. 2a). Suppose there is a sensor which
provides the coordinate of one of the bees (we do not know
which) at each instant of time and the measurement is cor-
rupted by noise. We wish to estimate the location of both
insects at every instant of time from these noisy observa-
tions.

This is a state estimation problem with multiple models.
The state vector a = (x1,Z2) contains the bees coordinates.
It will be assumed that the bee motion is the output of a



For each node created at instant t:
i) update mean and covariance

Prediction Filtering
4~ = Agd a=a + Ko —Cya™)
P-=A,P'AL +Q K= P’Cgl(thP’Cg; +R)?
P=({1-KC,)P~

ii)update mixing parameters
Cqt — kTQt—thG(Ot)CQt*I
where
(@,P) £ (dges Poe)y (@,P") 2 (dge-1, Poe—1)

Table 1: Tracking algorithm

stochastic equation
98 0
Q¢ = { 0 5 }%1 + w; (8)

with wy ~ N(0,Q), Q = diag(1,9) and the sensor equations
are
modell oy = |1 Olas + vy ©)
model2 oy =10 1las + vy

with v; ~ N(0,.1). The model transitions are described by
a Markov chain with transition matrix

9 1
T3] 10

Figure 2 shows the output of the tracking algorithm de-
scribed in table I for a single experiment. Figure 2b shows
the observations available to locate both bees (try to guess
their motion from this information). Fig. 2e shows which
bee is measured at each instant of time (this information is
displayed to give insight on the problem but it is not used
to estimate the bee trajectories). The true bee trajectories
and the MAP estimates are displayed in Fig. 2c,d. This
experiment shows that it is possible to locate both insects
most of the time, i.e., the algorithm manages to guess which
insect is being sensed. Finally, Figs. 2f-h show the density
function p(a;/O") (Gaussian mixture) at specific time in-
stants, identified by dots in Fig. 2Ze.

If one of the variables is observed for a long period,
its estimate has a small variance while the variance of the
other variable increases. This effect is clearly noticed in
Fig. 2f-h. Compare, for instance, figs 2g and 2h. In fig. 2g
the observations model has just moved from a situation in
which bee 1 is being observed, to a situation in which bee
2 is observed. Thus, the spread of the density along axis 1
is much smaller than along axis 2. After some time passes
(fig. 2h) the algorithm ”recognizes” that bee 2 is being
observed and narrows its uncertainty about it. Conversely,
the density along the bee 1 axis will spread.

4. APPLICATION TO TRACKING

Two difficulties have to be tackled for applying the previ-
ous algorithm to tracking: the combinatorial explosion of
the number of components and the detection of the visual
features (observations). These aspects will be briefly ad-
dressed in the sequel.

Figure 2: Finding the bees: a) what we want to know;
b) observations; c) bee trajectories (dashed line) and the
MAP estimates (solid line); and d) model sequence used
to generate the observations (not used for estimation); f-h)
state densities at specific time instants (see marks in c)

4.1. Complexity Reduction

In practice, the number of components of the Gaussian mix-
ture cannot grow to infinity and must be limited. Sev-
eral strategies have been proposed [11]. In this paper, two
methods are used to achieve this goal: component elimina-
tion and merging. The first method discards components
with mixing parameters smaller than a given threshold (e.g.,
107%). These components produce a negligeable contribu-
tion to the mixture density. The second method tries to
avoid multiple components with identical densities by merg-
ing then into a single component. The Kullback divergence
is used to decide if two components are similar (the diver-
gence is computed for all pairs of components; the pair with
smallest divergence is merged if the divergence is bellow a
given threshold; the process continues until there is no pair
meeting the merging conditions). The divergence between
two normal distributions, N(u, P), N(y', P') is given by |9]

D=3 (PP i)
Ler{P7'P' + P""'P — 21}

A similar criterion is used in |5] to approximate a periodic
function by a Gaussian mixture in the context of nonlinear
phase estimation.

4.2. Feature Detection

In this paper it is assumed that the shape model is at-
tracted by feature points detected in the image as in active
contours |4]. Several methods are available for detecting im-
age features, e.g., by using line searching along the normal



directions at specific contour points |10]| or by computing
the data centroids using competitive learning methods |1].
In all of these, feature detection requires a shape estimate.
Therefore, the tracking algorithm has a feedback loop: the
shape model tries to track the image features in a video
sequence but the detected features depend on the predicted
shape. This is an old problem. What is new is the use of
multiple models which brings an additional difficulty: the
handling of multiple predictions 6~ = C;a~ based on dif-
ferent shape models. In this paper, only the most probable
model is used in feature extraction.

5. RESULTS

The proposed algorithm was used to track moving objects
with significant shape changes in video sequences. A sim-
ple dynamic model was adopted to describe the evolution
of the motion parameters: the derivative of each parame-
ter is modeled by a Wiener process, leading to a dynamic
equation

I I
ay = |: 0 I }atl%»wt (12)

where a; € R'? is a state vector containing the motion
parameters and their derivatives, I is the identity matrix,
and 0 the null matrix. It was assumed that the ob ject shape
in the first image is known. In each new image the following
operations are performed: i) shape prediction according to
6~ = C;a~ (i being the most probable model); ii) feature
detection by line search along the normal directions to the
contour; iii) update of mixture components according to
table T; iv) component reduction as described in section 4
and v) parameter estimation using the MAP method.

Figure 3 shows tracking results obtained with a sequence
of a moving hand. Three shape models were used as shown
in fig. 3a. Fig. 3b-c displays the selected shape model
transformed using the estimates of the affine parameters.
This example illustrates the ability of the proposed algo-
rithm to cope with significant shape deformation, keeping
good tracking capability. Only parametric models as the
one described in this paper allow to efficiently propagate
density functions in a 12D space.

6. CONCLUSIONS

This paper addresses the problem of tracking of moving ob-
jects with significant changes of shape or motion dynamics.
The approach followed relies on multiple models based on
Gaussian mixtures and hidden Markov models. A tracking
algorithm derived from Nonlinear Filtering is presented and
illustrated in two situations. In the first, two points mov-
ing independently along a line are tracked, only one being
observed at each time. In the second, a two dimensional
object with a changing shape is tracked. Unlike other ap-
proaches the proposed method relies on a parametric model
of the a posteriori distribution providing efficient tools to
update the parameter estimates.

Figure 3: Tracking results with real data. a) shape models
b-h) shape estimates
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