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ABSTRACT

For audio and acoustic system responses, the auditory system
tends to smooth high frequency spectral regions and to register,
mainly, low-frequency components of late echoes in the time
domain. To model such processing, a theoretical model for non-
uniform spectral smoothing is introduced allowing the choice of
arbitrary frequency resolution profiles to match such auditory
features. This generalized framework is extended to allow
mapping of such smoothing spectra into time domain.

1. INTRODUCTION

The last decades have seen an impressive research activity in the
evolution of alternative time-frequency analysis [1] and
multiresolution signal representation methods [2].

However, although the tools established through such work
(Fourier and related Transforms, STFT, the Wavelet transform,
etc), are suitable for many applications, there still exists a large
class of cases for which neither of the existing joint time-
frequency nor of the time-scale analysis methods are appropriate
and new, flexible processing tools must be developed [3]. The
problem of the non-uniform frequency resolution of the auditory
mechanism has already attracted significant work for such
alternative time-frequency methods, allowing analysis of
audio/acoustic signals in warped-frequency scales via FFT and z-
Transform [4],[5], time-dependent frequency warping via
Wavelets [6], non-uniform filter Banks, and fractional octave
Transforms [7]. The principle motivation behind such work is
that the auditory mechanism interprets signals at reduced
frequency resolution with increasing frequency and due to this
for over half century now, engineers represent the frequency
response of audio/acoustic systems in log frequency scale, often
at a fractional octave resolution (e.g. as 1/3 octave average). Such
representation is more recently supplemented by more advanced
ERB or Bark scale representations [8] (see Fig. 1).

The work reported here is based on similar motives and addresses
the practical problem of appropriate time-frequency modification
of audio (e.g. loudspeaker) and acoustic (e.g. room) responses in
order to accommodate such auditory features. Especially in such
highly dispersive multipath systems as rooms, the ear tends to
largely ignore the high frequency components of late reflections,
whilst registering more mid and low frequency regions of such
late response components. This feature is implemented as a
magnitude spectrum modification in the MLSSA measurement
system [9] (Fig. 1).
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Here, to address such problems, a generalized framework is
introduced which allows the choice of any arbitrary and
psychoacoustic spectral resolution profile and to map such
operations into the time domain via the introduction of a novel
variable with frequency window function. All subsequent analysis
of the discrete-time audio/acoustic response functions h(n),
sampled at a frequency f, (Hz), will refer to finite duration data,
practically implemented via the initial application of a (half)
window w(n) of duration N (samples), whose length will also
determine the lowest response frequency fj (Hz) which can be
represented in an unambiguous way. Hence, the corresponding
complex frequency response H(k), will be practically bounded
between f; (Hz) and the folding frequency f,/2 (Hz).

2. SPECTRAL SMOOTHING

Let us first consider the simplified spectral smoothing operation
(weighting), starting from the (windowed) response Transfer
Function H(k) where k is the discrete frequency index
(0<k<N-1). Then, the complex smoothing operation may be
described as a circular convolution:

H, () = H() ® W, (k) =§H((k-i) mod N) W, (1) (1)
i=0

where the symbol ® denotes the operation of circular
convolution and W, (k) is a low-pass filter function. For

simplicity here, this function can be supposed to have an ideal
low-pass filter form according to the following equation:

1/@m+1) , k=0,..,m
W, (k)=1/2m+l) , k=N-m,..,N-I )

0 , otherwise

where m is the sample index corresponding to the cut-off
frequency f.(Hz), according to the expression m=(N/f,)f..
Given the band-limited nature of H(k), the above operation does
not practically generate any overlapping artifacts on Hgy, (k) . In
general, W, (k) should be arbitrary and complex, but the above

expressions represent it as real, assuming it to be a zero-phase
function. This assumption was made due to physical
considerations, since with smoothing it is required to avoid
imposing any unwanted effects on the phase of the original



function. From eq. (1) and given that h(n)/H(k) and
Wem () / Wy, (k) constitute Fourier pairs, then:

DFT
Nh(@)W g, (1) = H(k) Dw, (k) 3)
Based on the ideal smoothing function of eq.(1), the

corresponding time window function wg(n) can be easily
evaluated as:

(1 \sin((myN)-(2m+1))
Nemt) ) sin(aN)

W g () @

It is now necessary to define a general non-uniform operator
allowing the required variable with frequency smoothing. Given
that the "quality" factor Q=f/Af [10], traditionally describes the
smoothing properties of filters, then the discrete-frequency

version of this function will be Q(k)=k-f; /Af, , where f};

gives the DFT bin separation and Afy indicates the filter

bandwidth for any value of the frequency index k. Then the
discrete variable m may be expressed as a function of k by the
following equation:

m(k)= (k£ )/Qk)]¢ ®

where ¢ is a normalization factor, hence allowing a variable degree
of spectral averaging for each value of the discrete frequency, k.
To allow W, (k) to accommodate the variation of m(k) implied
by eq. (5) and given it must also depend on k (eq.(2)), it is
necessary to express it as the more general function Wy, (m(k),k),
for m(k)=1,...,(N/2)-1. Such an expression allows flexible
adaptation into the traditional fractional octave smoothing,
when W, (m(k),k) has constant value over a range of values of k,

and bandwidth increasing with frequency (Fig. 1).
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Figure 1. Resolution vs. frequency of various existing
frequency analysis schemes.
The function W, (m(k),k), representing all the possible cut-off
combinations of Wy, (k) as are implied from the previous
expressions, can be then presented as a MxN matrix 2Wsm s

where M<N/2 is the maximum value for the function m(k). Each
row of this matrix represents a frequency vector for the smoothing

filter, for a specific value of m(k) and each column represents all
the possible cut-off values of the filter at each discrete frequency
k. From eq.(1), the general form of the desired non-uniform
smoothing will be now given as:

H, (m().k) =W, (mk),k) ® Hk)e

N-1
S Hgp (mk),k) =3 W, (m(k),i)-H((k-i) mod N) (6)
i=0
In order to evaluate eq.(6), H(k) must be defined for all values of
i, and this allows it to be represented by a NxN complex

matrix 2H , where each row is derived by the circular shifting of
the H(k) elements (modulo N). So, the matrix form of non-
uniform spectral complex smoothing will be:

*Hop = Wop, *H=
> Wom (1.)-H(0-1)
i=0

N-1
Wi (Li) H(N-1-)

=0 . @)

%;Wm M,)H(0-) ... %;wsm (M,i)) H(N-1-i)

1= 1=l

By choosing (tracing) N elements following specific paths in the
2-D space described by szm , it will be possible to derive the
desired function Hg,,(k) , which will be a non-uniform spectrally
smoothed function, derived from H(k) (see Fig. 2).
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Figure 2. Derivation of smoothed spectral vector by
tracing through the 2Hsm matrix.
More formally such an operation will be described as follows. Let
Uy be a NxN matrix with elements uj such that u;=1, for
i=j=k and u;;=0 for all other values of i and j. Now, let v, be
a 1xM vector, having its m-th element equal to 1 and all other
equal to 0. Then, vm-szm-Uk will generate a 1xN vector with

all elements equal to 0, except of the k-th which will be equal to
H,, (m(k),k) . Given that k has values in the range [0, N-1], then
it may possible to generate N different vectors in the previously

described way, which when summed will produce the required 1-
D smoothed sequence. Since m may be derived from a general



frequency/resolution function m(k) (see eq.(5)), then the required
vector of the smoothed sequence, i.e. lem will be obtained as:

1y —f(v ’H,, U, ) ®)
sm— m(k) sm Yk
k=0

3. FREQUENCY TO TIME MAPPING

It is also possible to approach the non-uniform spectral
smoothing processing via time domain, by considering variable
windowing of h(n). Let us at first consider the window
function wg, (n), which it may have the typical form defined by
eq. (4). Then in order to accommodate the different cut-off
m(k)€ [1,N/2) of the corresponding spectral smoothing function,
this window may be represented by the function w, (m(k),n)

which it can be presented in a matrix form as 2wsm , where each

row represents a time vector for the window for a specific value
of m and each column represents all the possible variations of the
window at each discrete value of the time index n (Fig. 3). It can

also be easily deduced that the rows of matrices 2wsm
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Figure 3. Window functions corresponding to different
smoothing factor

As was the case with spectral smoothing, it is also possible to
definehy, (m(k),;n)as a sequence which describes the 2-

dimensional windowing of the signal sequence h(n). That is:
hsm (m(k) ,n):N'h (Il) Wom (m(k) ,Il) (9)

Note that, by definition, hg, (m(k),n) & Hg,,(m(k),k) are Fourier

pairs, only for each specific value of the function m(k). It is now
necessary to map the spectral smoothing operation into the time
domain. In the previous section equation (8) described the non-
uniform spectral complex smoothing of H(k) as the summation of

vector elements in the MxN matrixZHsm. Given also that

m(k)=m(N-k), then equation (8) can be also expressed as:

1 _ 2 2
Hsm _(V m(0) Hsm .UO )-I_(V m(N/2) Hsm .UN/Z )+
(N/2)—1

+ z [(Vm(k)'2 H,, U, )"'(Vm(k)'2 H, Un )]
k=1

(10)

The summation described in eq. (9) contains (N/2)+1 vector
terms, each of N elements. Let S, , k=0,...,N/2 , be each one of

these vectors, i.c.

Vm(k) ZHsmUk + Vm(k) ZHSmUN—k kiO, kiN/Z
Sk={Vm@ ~HamUg k=0 amn

V) Hen Uy k=N/2

For convenience, it is possible to define the factor Ey as the

complex number Ex=e2*/N Thus the IDFT NxN matrix E for
an N-point IDFT is built from the powers of Ey . Then the IDFT
of vector lem will yield the required time-domain sequence of

the smoothed spectrum, i.e.. 1hsm , that is:

Lt m—f s, J-y)

1 1

h,=— H_,E=— Sy [E= |:—(SkE):| (12)
N N\ i oL N

The vector term (1/N)-(Sy -E) inside the sum is the IDFT of the
vector S, yields a time vector sy, . It is easy to show that the n-th
element of the vector sy | sy (n) will be given by:

s 1=l (m(K)m) © cos(2mkn/N)| (13)

Then, from eqs. (12) and (13) the n-th element of the vector
1hsm s hsm(n) will be:

hy (n):%~]\§(h on (m(k),n) © cos(2nkn/N)) (14)
k=0

Finally, from eq.(9) and eq.(14), the non-uniform spectral
smoothing processing via time domain is defined as:

N/2
B (M)=2-3 (W, (m(K),n)yh(n) ® cos2nkn/N))  (15)
k=0

or equivalentlly:

hsnxn):zﬁz/m_‘{(wsm (m(k)f)h(z))cos[@(n-f)H (16)
k=0¢=0| N

4. RESULTS

The above process was succesfully apllied to many practical
audio/acoustic response measurements, but the results can be
more clearly illustrated for a charasteristic dispersive system
response, such as a comb-filter.Typical results of the non-
uniform smoothing in both time and frequency domains of a
comb-filter are shown in Fig. 4. As can be observed, late
reflection components are progressively suppressed and
increasingly low-passed whithout any time-scale modification,
and similarly, the corresponding spectrum is progressively
smoothed resulting to a reduction of the characteristic comb-like
profile.
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Figure 4. Original comb-filter sequence and its non-
uniform spectrally smoothed version; (a) time domain
sequences, (b) magnitude spectra.

5. CONCLUSIONS

Finite-length and band-limited data sequences such as
audio/acoustic system responses can be processed by arbitrary or
psychoacoustically-derived frequency smoothing profiles so that
smoothed versions may be derived both in frequency and time
domains, as was explained. The procedure for such operations
via either frequency or time domain, it is summed in Fig. 3,
generally conforming to the framework described in [3]. From
this figure it can be deduced that windowing/smoothing is
implemented as matrix operations between the mapped data
matrix and the required window/filter matrix, from which the
smoothed data matrix is derived. To obtain the required
smoothed sequence, an apprepriate tracing and combination
procedure must be applied on the 2-D smoothed data.This
method introduces a very flexible, efficient and generalised
processing procedure, appropriate for many audio/acoustic
applications. Finally, by observing eq. (16), it can be noted that
the form of the smoothed time-domain operation, bears some
relation to that of MDCT [11], but significantly, there are also
the following differences: (a) each time sample is calculated
using the summation over k of sums having the general form of
MDCT, and (b) the window function whithin the "MDCT-like"
sum depends on the function m(k).
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Figure 5. Time-frequency mapping procedure for the
smoothed spectral representation.
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