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ABSTRACT

We present an algorithm for all-pole (envelope) modeling
of the amplitudes of sinusoids present in voiced speech
segments which works even when the number of
sinusoids is very small, as occurs with high-pitched
speakers. In contrast to previous methods, this algorithm
minimizes a squared error criterion in the log amplitude
domain rather than the amplitude domain, and so is
better matched to the properties of the human auditory
system. A weighted iterative approach is used to get near
optimal solutions to this otherwise nonlinear problem.
This new frequency domain log amplitude modeling
(LAM) algorithm gives impressive results, especially in
the case of high pitched female voices where
conventional linear prediction methods are inadequate.
The algorithm can easily be generalized to develop pole-
zero models.

1. INTRODUCTION

Spectral amplitudes of sinusoids present in voiced speech
frames display a very large dynamic range that naturally
requires a logarithmic scale for adequate representation.
In addition perceptual characteristics of the human
auditory system seem to closely follow a logarithmic
scale. Based on these considerations it is reasonable to
use an error measure which is the sum of squared
differences, on a logarithmic amplitude scale, between a
given set of amplitudes and the corresponding magnitude
response of an all pole model:

J= 2 [logD,_(a))—log |H(ej“’) ]2 . (1)
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In (1) € denotes a discrete set of frequencies @ where the
real-valued amplitude data D,(w) are specified. Also,
H(e') is the frequency response of the desired all-pole
model
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where g; are the real-valued model parameters, p is the
order of the model and G is a constant gain.

The error measure in (1) directly addresses spectral
envelope errors, unlike the discrete all-pole (DAP)
modeling method [2], which minimizes the discrete
Itakura-Saito measure, and the minimum variance
distortionless response (MVDR) method [6], which
results in all-pole models that are a type of average of all
lower order all-pole models.

Since it is defined in terms of logarithmic amplitudes
(and can easily be expressed in terms of decibels), this
error measure is also more relevant to the human auditory
system than other common mean square error measures
based on simple amplitudes.

The minimization of J is a nonlinear problem whose
solution generally requires optimization techniques. In
order to avoid the use of these techniques we consider an
iterative procedure that, at the mth step, minimizes the

error measure
oy [logDr (co)—log|G""1/A""1 (ezj“’) ]2 y
. | D) A e -G | 3

| D(@)a™ (" )-G6" | }

In equation (3) the superscript m indicates the iteration
number and D(w) is a complex valued function whose
magnitude is the same as that of the real data D.(w) for
we Q. At each step the minimization of J” with respect

to the @ and G™ is linear in these unknowns. If we start

with an appropriate set of values for these parameters and
the sequence of values converges then it is clear that J”
approaches the original error measure J.  Similar
linearization techniques, without the use of the log



function, have been discussed in statistical signal
processing by Mullis and Roberts [5], and in control
systems by Sanathan and Koerner [9]. Our approach
below follows the work of Kobayashi and Imai [3].

2. DESCRIPTION OF THE ALGORITHM

The first issue concerns the specification of €. For
reasons of computational efficiency we will take
frequencies that are uniformly spaced around the unit
circle: Q={w,=27/N: k=0, 1,..., N-1}, with N even.
This choice of Q will enable us to use the DFT in the
calculations that follow.

In harmonic coders the real-valued amplitudes D, (w) are
obtained by examining the peaks in the short time Fourier
transform of a frame of speech. For high-pitched speech
segments, especially from female speakers, this set
provides a very sparse sampling of the envelope of the
spectral amplitudes. With the specification of Q2 above we
need to interpolate between these spectral envelope
samples. A natural and computationally simple first step
is to use linear interpolation. More numerically intensive
interpolation methods based on cubic splines can also be
used [1].

The phase of the function D(w) in (3) can be specified
without any constraint. However, since linear prediction
methods often give rise to all-pole models with the
minimum phase property, we similarly require that D(w)
be minimum phase. This minimum phase sequence can
be uniquely obtained [7] from the interpolated magnitude
data using cepstral coefficients,
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With the definitions in (4) and (5) the minimum phase
sequence D(wy) is given by

N-]
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Next we write the error measure in (3) in matrix-vector
notation. For this purpose we define the following weight
function for the mth iteration
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where a,=27k/N, k=0, 1, ..., N—1.

vector g™

We also define the
= [1 a' ay ay ]T , where T stands for
matrix transpose. With this notation the error measure
for the mth iteration in (3) becomes

J"=a""Aa" —G"¢"a" —Gma" e+ (G") g - (8)

In equation (8) the (p+1)X(p+1) matrix A is symmetric
and Toeplitz with the uvth element given by
= 2 '27t‘u7v‘k/N
W"Qrk/N)|DRrk/N)| ¢’ . 9
k=0
where u,v =1, 2, ...
component

, p+1. The (column) vector ¢ has uth

N-1
W"Q2xk/N)DQrk/N )e!> /N, (10)
k=0
with u =1,2, ..., p+1. Note that A and ¢ can each be
computed by a single application of the DFT. Finally the
scalar g is given by
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The expression for J” in (8) can be further simplified to
the following quadratic form

s =lam G ]{_AT ‘°Ham] (12)
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Minimization of J” with respect to the vector of
parameters a” and the gain G gives rise to a system of
linear equations in these unknowns and the minimum
value of J™:

|: A —C:| a” _ J;”]m . (13)
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Since A is symmetric and Toeplitz, the coefficient matrix
of this system of equations has a special structure which
leads to a fast recursive algorithm for the solution [4].
This solution is used to update the weight function in (7)
and the process is repeated until improvements in the
error measure are not significant. At the first iteration of



the algorithm the value of the weight function can simply
be set to 1. That is, take W (@) = 1, with @, = 27k/N,
k=0,1,...,N-1.

The complete algorithm can be summarized with the
steps below:

1. Obtain a set of peaks from a windowed DFT of a
frame of voiced speech.

2. Interpolate between the peaks to obtain values of
the spectral envelope that are uniformly spaced
around the unit circle.

3. Use (4), (5) and (6) above to obtain the minimum
phase sequence corresponding to the interpolated
spectral magnitude values of step 2.

Set the weight function to the initial value 1.

5. Compute the quantities A, ¢, and g using
equations (9), (10) and (11).

6. Solve (13) for the parameter vector a”, the gain
G™, and J”

7. If the change inJ” from j” ! is below a desired

threshold, then stop. Otherwise continue with the
next step.

8. Update the weight function using (7).
9. Repeat starting at step 5.

The method described above can be extended to yield
pole-zero models, using the same error criterion, by
replacing the constant gain G in (2) with a numerator
polynomial B(z).

3. EXPERIMENTAL RESULTS

Convergence of the algorithm is difficult to prove
analytically. However, since each of the sequence of
linear problems in (13) has a unique solution, we do
expect the resulting sequence of parameters to have a
convergent behaviour.  This is borne out by our
experimental results, which show that the algorithm
converges very rapidly. In fact there is no significant
change in the error measure after only two iterations.
Similarly there are no analytical reasons that would
guarantee a stable all-pole filter. The explicit use of the
minimum phase condition in step 3 above did, however,
lead to stable all-pole models in all the cases that we have
tested.

In figure 1 we have a typical test case of a frame of high-
pitched voiced speech from a female speaker. The
segment has an approximate fundamental frequency of
390 Hz, which is near the high end of the observed range
of fundamental frequencies.
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Figure 1: Voiced speech frame from a female speaker.

Figure 2 shows the magnitude of the widowed DFT, using
a Hamming window, of the frame of figure 1. The peaks
in figure 2 that are indicated with crosses were selected by
using a SEEVOC type peak-picking algorithm [8]. This
set of peaks provides only ten samples of the spectral
envelope in the speech bandwidth because of the high
fundamental frequency.
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Figure 2: Windowed DFT of frame of figure 1 showing
the selected peaks.

Figure 3 shows the spectrum of figure 2 together with the
magnitude response of the 14™ order all-pole filter
obtained after two iterations with the algorithm described
above. Linear interpolation between the peaks was used
in step 2 for this example. For comparison, figure 4
shows the magnitude response of a 14™ order all-pole
filter obtained using linear prediction (auto-correlation
method), superimposed on the spectrum of figure 2. The
gain of this filter was adjusted to minimize the spectral
distortion in dB.
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Figure 3: Magnitude response of 14th order all-pole
model obtained from the algorithm of section 2 after two
iterations.
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Figure 4: Magnitude response of 14th order all-pole
filter obtained by using linear prediction.

The difference between the two envelopes is quite
remarkable. The linear prediction envelope of figure 4 is
dominated by the appearance of the two peaks
corresponding to the first two harmonics. It also
completely misses the low amplitude peaks at mid to high
frequencies. This behaviour is quite typical and results
from the sparse sampling of the spectral envelope by the
high pitched periodic excitation signal, leading to
modeling dominated by the major harmonics. The
spectral envelope of figure 3, on the other hand, follows
the trend of the spectral peaks very well across the entire
speech bandwidth. This is especially true in the vicinity
of the perceptually important second formant and at high
frequencies, where the amplitudes are low.

4. CONCLUSIONS

We have described an algorithm for frequency domain
all-pole modeling of the spectral amplitudes of sinusoids
present in voiced speech frames. The algorithm works
well even for cases where the fundamental frequency
(pitch) is very high, which leads to the failure of previous
modeling methods.

In the new algorithm the filter parameters and the gain
are jointly computed to iteratively minimize the squared
error between the log spectral magnitudes. Experimental
results show that, after just two iterations, the algorithm
gives minimum phase models that tend to closely follow
the spectral peaks, even when these peaks are sparse.
Finally, the algorithm also has a simple extension to pole-
zero modeling
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