PROBABILITY OF FALSE ALARM ESTIMATION
IN OVERSAMPLED ACTIVE SONAR SYSTEMS

Douglas A. Abraham

University of Connecticut
Electrical and Systems Engineering Dept., U-157
Storrs, CT 06269

phone: (860) 486-2192

email: d.a.abraham@ieee.org

ABSTRACT

The probability of false alarm (Py,) in active sonar sys-
tems is an important system performance measure. This
measure is typically estimated by the proportion of alarms
to opportunities over some finite window, essentially form-
ing the sample exceedance distribution function (EDF). It is
common for sonar systems to be ‘over-sampled’; that is, to
have a sampling rate higher than the minimum required for
representing the bandwidth of the received signal, resulting
in reverberation data that are correlated from sample to sam-
ple. The performance of the sample EDF in P;, estimation
under such conditions is of interest. It is easily shown that
the estimator remains unbiased with correlated data. How-
ever, it is shown in this paper that the variance of the estima-
tor may be reduced from that for independent data by over-
sampling. Further, the variance is seen to fall between the
Cramer-Rao lower bound based on independent thresholded
(binary) data and that based on the complex matched filter
output data.

1. INTRODUCTION

The probability of false alarm (Py,) in active sonar systems
is typically measured by counting the number of threshold
exceedances (after normalization of the matched filter enve-
lope or intensity data) within a finite window in time. Intu-
itively one would expect that this is best done with indepen-
dent data samples. It will be shown in this paper that this
is not necessarily so. Let the sequence ..., X;, X; 1, ...
be the normalized complex matched filter output of an ac-
tive sonar system. If these data are reverberation-only
samples and assuming ideal normalization, they would
be zero-mean, unit-variance, complex Gaussian distributed
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(Rayleigh distributed envelope). Under these ideal assump-
tions and for some of the more straightforward normaliza-
tion and detection algorithms, the Py, of a detector is eas-
ily calculated and need not be estimated. However, there
exist situations where it is necessary to estimate Py, from
real data, including complicated normalization and detec-
tion algorithms and sonar systems operating in ocean envi-
ronments where the propagation and scattering conditions
that result in reverberation do not produce a Rayleigh dis-
tributed envelope. The analysis in this paper assumes the
ideal conditions under the premise that the results under non-
ideal conditions are similar.

Depending on the sample rate of the system and the
bandwidth of the transmit waveform, there may be substan-
tial correlation between samples or very little. If the sample
rate is near the bandwidth of the transmit waveform and the
source and receiver characteristics and the propagation and
scattering conditions result in complex Gaussian distributed
reverberation with a nearly flat spectrum, the data should be
(roughly) independent. It is, however, common for sonar
systems to be oversampled and for these data to be used in
estimating Py,. If Y; = | X; |2 are the intensity data and h is
the detector threshold, then the sample exceedance distribu-
tion function (EDF) estimate of the Py, will have the form
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where U(y) is the unit step function and, for convenience,
the n samples used in the estimate are numbered : =
1,...,n. Clearly Z; = U(Y; —h) is a Bernoulli ran-
dom variable, taking on the value 1 with probability p =
Pr{Y; > h} and value 0 with probability 1 — p. It is eas-
ily shown that p is unbiased (E [p] = p) without requiring
independence of the samples. The following sections con-
sider the variance of p for correlated data.



2. VARIANCE OF THE Pr 4 ESTIMATE

Assuming wide sense stationarity of the normalized rever-
beration data, the variance of p can be described as
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where r; = E[(Z; —p) (Zy4i —p)] fori = 0,...,n — 1.
When the data are independent, ; = 0fort:=1,...,n—1
and the variance is, as expected, @.

In order to evaluate the sum of eq. (2), r; must be ob-
tained as a function of the spectrum of the complex matched
filter output data. Towards this end, r; can be related to the
probability of the exceedance of both Y}, and Yy ; over A,

T3 = E [Zka+i] — p2
= E[UY—m)U (Y —h)]—p’
= Pr{Yyi>h and Yy >h}—p> (3

Evaluation of eq. (3) requires integration over the joint prob-
ability distribution function (PDF) of Y, and Yj; when
the two samples are not independent. As shown in the
Appendix, if the correlation between two of the complex
matched filter output samples is v = E [XiX j*] , then the
joint PDF of their intensity values is
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where I (z) is the zero! order modified Bessel function.
After some manipulation it can be shown that r; becomes
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where v; = E [XkX,jH.] and
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is the EDF for a non-central chi-squared random variable
with two degrees of freedom and non-centrality parameter
6. Evaluation of eq. (5) may be accomplished numerically,
exploiting the three-moment approximation to E (h; §) de-
scribed in [1].

In order to evaluate eq. (2), the values of the autocorre-
lation function of the complex matched filter output for lags
m = 1,...,n — 1 are used in eq. (5) to form the values
71, ..., n_1. Assuming a flat reverberation spectrum when

the sampling rate is equivalent to the transmit signal band-
width, the oversampled spectrum would have the form of an
ideal low-pass filter, resulting in the autocorrelation function
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where D is the oversampling factor (i.e., D = 1 results

in independent data). If the reverberation data are well-
represented by an AR process with spectrum
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when the sampling rate equals the bandwidth of the trans-
mitted waveform, then the autocorrelation function of over-
sampled data is
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and (c;, p;) are respectively the residues and poles of

k —1
X (2) = <1+Zaizi> . (1D
=1

3. CRAMER-RAO LOWER BOUNDS

It is straightforward to show that the Cramer-Rao lower
bound (CRLB) for p based on the data {71, ..., Z,} is
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Note that the estimator of eq. (1) is efficient (i.e., its vari-
ance meets the CRLB) if only the binary data are available.
As there is information lost in forming the binary data, the
CRLB for the original complex data ({ X1, ..., X,,}) is also
considered. Here it is assumed that the data have variance

A= 107—’1, which results in the CRLB
S P
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It should be noted that the CRLB for the intensity data is
identical to eq. (13). It is easily shown and intuitive that

CRLBx < CRLBy (14)

with equality only for p = 1.



4. ANALYSIS

To validate the theoretical analysis of the previous sections,
the variance of the Py, estimator is estimated from simu-
lated and real data and compared with the theoretical val-
ues in Fig. 1, where good agreement is seen. In this exam-
ple, n = 500 data samples were used (even after oversam-
pling the data) to estimate the Py,, with the threshold cho-
sen so that p = 0.01. The real data were from a 125 Hz
bandwidth LFM waveform and were tested to insure Gaus-
sianity and an approximately flat spectrum. The analytical
results assumed the autocorrelation function of eq. (7). As
one would expect, the variance of the Py, estimate increases
with the oversampling factor because the effective number
of independent samples decreases. However, the variance
of p using the oversampled data is less than that of p just us-
ing the equivalent number of independent samples (= ).
This is, perhaps, a non-intuitive result that requires some dis-
cussion. Sampling theory tells us that if a signal is sampled
above the Nyquist rate, it (ideally) may be perfectly recon-
structed. Oversampling is a step toward reconstruction, fill-
ing in what’s missing between the independent samples and
providing a more accurate picture of what’s happening around
the threshold. This apparently leads to areduction in the vari-
ance of the Py, estimator.

Next, consider the CRLBs of the previous section. Fig-
ure 2 shows n times the CRLBs and n times the variance of
P as a function of p (effectively the CRLB and variance per
sample). As opposed to the analysis associated with Fig. 1,
no = 500 independent data samples were always used here,
so the oversampled cases used n = ngD (correlated) sam-
ples. The CRLB for the binary data and the variance of the
independent data (1D = 1) are identical. However, oversam-
pling reduces the variance and shifts the curve down toward
the CRLB for the complex data. Oversampling by more than
D = 5 did not provide significant improvement.

InFig. 3, the ratio of the variance of p with oversampling
to that for independent data,
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is shown for various Py, values, where og (D, n) is the vari-
ance of p using D times oversampling and n samples (3
independent samples). The reduction in variance increases
with the oversampling factor, although the majority is ob-
tained by the time DD = 4. The results for this figure were
obtained by using ny = 500. However, the results for ng =
500 and ng = 1000 were visually indistinguishable. It is
not believed that A (D, no) is independent of ng, but that it
rapidly approaches an asymptotic value with ng. This com-
ment holds for the results shown in Fig. 2 and also under the
AR process autocorrelation values of eq. (9).

5. CONCLUSIONS

The variance of the standard Py, estimator was derived ana-
Iytically for correlated data. The analysis leads to the inter-
esting conclusion that oversampling the reverberation time
series results in a reduction in the variance of the Py, esti-
mate. It was seen that the majority of the improvement is
obtained by the time the data are oversampled by a factor
of four, a result that seems to be independent of the size of
the window used to estimate the Pj,, assuming some mini-
mum size. The variance was compared with the CRLBs ob-
tained from independent complex matched filter output data
or independent binary thresholded data. Though not an ef-
ficient estimator compared with the complex matched filter
output CRLB, oversampling was seen to provide improve-
ment over that obtainable with binary independent data. The
implications of this result on the false alarm and detection
performance over a full ping of data, where the correlation
introduced by oversampling makes analysis difficult, are un-
known and worthy of further research.
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A. JOINT PDF OF CORRELATED INTENSITY
DATA

If the pair (V, U) are unit-variance, zero-mean complex ran-
dom variables with a correlation v = E[VU*], then their
joint PDF has the form

1
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where 3 (v) is the real part of v. Transformation to an
intensity-angle parameterization results in
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where v = /ye’®, u = \/ze7?,and y = |y| &P Integration
over both 6 and ¢ from O to 27 then results in eq. (4).
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