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ABSTRACT 

We propose a new family of mixed constant modulus 
algorithms for the elimination of local minima asso- 

ciated with the fractionally spaced constant modulus 
algorithm in the presence of channel noise. A special 
case of this family is the Leaky Constant Modulus Al- 
gorithm (L-CMA). We show that L-CMA aims to min- 
imise jointly the intersymbol interference (1%) and the 
noise gain introduced by the equalizer. Moreover, we 
derive a suitable range of leakage factors for which all 
local minima due to large noise amplification are elim- 
inated. 

case for p = 1 and p = 2 eliminates some of the lo- 
cal minima associated with CMA [5], but we did not 
produce then an adequate proof. For p = 2, (1) is a 

mixture of constant modulus criterion and ]]w]]i which 
is the noise amplification factor of the equalizer; hence 
for a suitable value of K, (1) is expected to eliminate 
local minima which have large noise amplification. The 
algorithm update equation is given by 

w(k+~) = ~(~)(1-2~~)-4~(ly(~)i”-l)y(k)x(/c) (2) 

1. INTRODUCTION 

The Constant Modulus Algorithm (CMA) is a widely 
used blind equalisation algorithm due to its robust- 
ness to various physical imperfections such as loss of 
disparity, channel length under modelling and chan- 
nel noise. For an invertible fractionally spaced chan- 
nel with no noise, all minima of CMA perform equally 
well [6]. However, when there is channel noise, var- 
ious minima behave differently as the noise is ampli- 
fied by the squared 12 norm of the equalizer impulse 
response. Various techniques have been proposed to 
obtain convergence to a global minimum in the pres- 
ence of noise. Typically, a solution based upon cross- 
correlation based equations, [4], and a channel surfing 
and re-initialisation technique, [8], which unfortunately 
require inversion of a matrix, have been proposed. In 
[l], a mixture of constant modulus and cross correlation 

criterion ([7] and [3]) was employed to obtain global 
convergence, but this requires a computationally de- 
manding search over all possible minima of CMA. We 
propose a family of mixed constant modulus algorithms 
which have the potential for global convergence by min- 

imising the following cost 

where w(k) and x(k) are respectively the equalizer pa- 
rameter vector and the regressor vector at sample num- 
ber Ic, and p is a small step size. We refer to this 
case as the Leakage Constant Modulus Algorithm (L- 
CMA). Two sub-channels were chosen for our simula- 
tion experiment, sub-channel 1 = [0.6098 - 0.48781T 
and sub-channel 2 = [0.9615 0.1923]*, and the chan- 
nel noise power is taken to be 0.1 (i.e. SNR is 10 dB). 
The performance surfaces associated with CMA and L- 
CMA are depicted in Figure 1 for h: = 0.26 (discussion 
of the choice of K: will be provided later). There are two 

global minima and two local minima for CMA, but the 
local minima have disappeared in L-CMA. 
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Figure 1: The contours of the performance surfaces for 

CMA and L-CMA 
J=E{(Iy(k)(2-1)2}+K c IWiIP PEz+ (1) 

2=0 

where y(k) is the equalizer output and {wi} is the set In the next section, we analyse the local conver- 
of nf equalizer impulse response coefficients, and K is gence behaviour of L-CMA and provide suitable bounds 
a mixing constant. We have shown elsewhere that the of K to avoid ill convergence to local minima. 



2. MINIMA OF CMA AND L-CMA 

The constant modulus cost function for a BPSK signal 
in terms of the combined channel and the equalizer 
impulse response {hi} of length N can be written as, 

PI, 
N-l N-l N-l 

JCMA = 1 - 2 c hf + 3( c h;)’ - 2 c k;(3) 
1=0 i=o 1=0 

= (llhll; - 1)’ + 2I, 

where llhll~ is the squared 12 norm of {hi} and 1h char- 
acterises a measure of IS1 as follows 

N-l 

I, = c k”h; = llhllf - c hf (4 
zf.7 i=O 

The cost function associated with L-CMA can, there- 
fore. be written as 

J = (llhll; - 1)2 + 2rh + +ll; (5) 

where w is the equalizer parameter vector. Assume 
that the channel convolution matrix C to be invertible. 

Hence w = C-‘h. Therefore, in principle, we have 

J = (llhll; - 1)2 + 21h + +?hll; (6) 

It is convenient to analyse the above cost function in 
terms of the radial and spherical components which is 

similar to the analysis of CMA in the presence of noise 
[2]. Hence, write h = rhsuch that Ilhllz = 1. Therefore, 

J = (1 + 21/,)r4 + (K]IC1hll; - 2)r2 + 1 (7) 

where Ih = 1 - ~~=~’ hf. Minimisation with respect 
to T yields 

2 - rcllC?hll: 

r2 = 2(1+ 21h) (8) 

Corollary 1: There are no nontrivial solutions for L- 
CMA if ri > 2X,,, (CCT). 

0 

Proof: The solution for r2 is real only if rc]lC-‘h]]~ < 
2. However, X,,, (CC*)-’ 5 IIC1hll; 5 X,,,(CCT)-l 
Therefore, no nontrivial solution exists for T if K: > 

wna,(CCT). 
0 

From now onwards, it is assumed that K: is chosen 
to be less than ,c$h,Z. Substituting (8) in (7) yields 

J = 1 _ 10 - 41C-1w)2 
4 1+ 2Ih 

Hence arg minn J = arg maxn <, where 

(9) 

(10) 

For a suitable value of K, maximisation of C means min- 
imisation oflh and ]]C-‘hII;. i.e. L - CMA aims to 

minimise both the ISI and the noise amplification 
factor. 

Finding the stationary points of i means finding the 
roots of 

a< 

dh= 

2 - tc\lC-‘hII; 

1 + 2Ih 
(K(I+alh) a”c;.h”’ +(2-l;l~C-1h~~$$) 

(11) 
Taking the difficulty of finding a closed form solution 
for (11) into consideration, we aim to establish the be- 
haviour of L-CMA for two special classes of channels, 
each of them leads to important observations. 

Corollary 2: For orthogonal channels, L-CMA has 
no effect on the cost function other than a radial shrink- 

ing of the position of the local minima. 
0 

Proof: For orthogonal channels CCT = X-l1 where 
X is the eigenvalue of (CC*)-l. Therefore, ]]C-‘h]]~ = 

X and< = w. Hence 

arg rntx< = arg rninIh 

and r,ira = dz, hence the proof. 
cl 

An interesting consequence of Corollary 2 is that for 

orthogonal channels all minima perform equally well, 
hence there is no need to eliminate them, and L-CMA 
obeys this requirement. Figure 2 depicts the perfor- 
mance surfaces of L-CMA for different values of n for an 
orthogonal channel (sub-channel 1 = [0.6354 0.31031T 
and sub-channel 2 = [-0.3103 0.6354]*). 
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Figure 2: The performance surfaces of CMA and L- 

CMA 

Corollary 3: For channels such that CCT is a 
diagonal matrix with distinct eigenvalues, a sufficient 
condition on h: to eliminate all minima except the two 
global minima is 



2x ma~2(CCT) < n: < %rm,l(CCT) 

where X mazl CC@) and kaz2(CCT) are respec- 
tively the largest and the second largest eigenvalues of 
Cc?. 

Prtof: Write /C-‘hll~ = Xa + CEy’(Xi - Xe)h”, 
where Xi is the ith eigenvalue of (C@)-l. Hence 

<= 
(2 - K c;“=nl X;hf)2 

1+ 2Ih 
(12) 

Lemma 1: The cost [ is maximised only when h = 
fe,, i.e. h = {h : Ih = 0) 

0 

where e, is the wth coordinate vector. The proof is 
given in the Appendix. See also Figure 3 to view C for 

N = 3, Xe = 0.1, Xi = 0.3, X2 = 0.6 and K = 0.05. 
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Figure 3: The performance surface and the contours of 

Hence h is considered only along the direction of 
the coordinate vector e,. Therefore, (8) yields rkin = 
1 - 0.5KX”. 

When n is small (K < 2X,,,(CCT)), there are N 
possible nonnegative r2 which are the 2N candidates 
for possible maxima of i. As K increases the number 
of nonzero r2 decreases. 

When 2X maIz(CCT) < K < 2X,,,i(CCT), then 
there is only one non negative r2 which is the candidate 
for the two global maxima on {, hence the proof. 

0 

When r; = 2X,,,2(CCT), rLin = l-W{ 

and J = 1 - rkin. The bias in the location of the min- 
imum B(T) and in the cost B(J) can be respectively 

written as B(r) = wi and B(J) = -(2- 

k$G-1. For a two dimensional channel + equal- 

izer response case, B(r) = & and B(J) = A(2 - 

A) and the b ias decreases as the condition num- 

ber x(R) (= m) increases. Suppose, X0(R) 

< Xl(R) ... AN-~(R) < AN-~(R) and Xj+l(R) w 
Xj+2(R) M ... E XN-~ (R), it is suggested to choose 

K = 2X,(R) as in this case the 2j worst minima will 
disappear and the remaining 2( N -j) minima may per- 
form approximately equally. 

Even though the results provided in Corollary 3 are 
valid only when (CC?)-l = QAQT and all columns 
of Q are the coordinate vectors, for the two dimen- 
sional case, simulation results suggest that the above 
results are valid for arbitrary channels with columns of 
Q which are only approximately the coordinate vectors. 
This is under current study. 

3. CONCLUSION 

We proposed and analysed a leaky constant modulus 
algorithm which jointly minimises IS1 and the amount 
of noise amplification of the equalizer. L-CMA has po- 
tential to eliminate undesirable local minima, which 
have large noise amplification, associated with the frac- 
tionally spaced CMA. Moreover, our analytical result 
provides a range of leakage factor, K, to avoid ill con- 
vergence of the equalizer to local minima. 

Appendix: Proof of Lemma1 

Write h = [Jl - C;“;’ hf hl . hNml], i.e., ho 

= J 1 - xi”=;’ h,Z , hence (12) can be written as 

(13) 
c = (a-tc~~;‘A,hf)2 

I+ 2(1- CL;’ h;) 

((2 -I+,) - IcC:;~(& - h)hi2J2 

= 1+4C~~1hp-2(C~~1h~)2-2CzN=;1h4 

and substituting hi = rlti and t = {t : CL;’ tf = l}, 

c = ((2 - KXLl) + fw$io - x2-l ktf))2 _ n”(t) 

1+ 4r: - a?31 + CL;’ tt’) d(t) 
(14) 
\ I 

and ~1 2 1 because c,“<’ hf 5 1. 

Proposition 1: There are no maxima for C in ~1 E 

[O, 11. 
0 

Proof: 
- = 4 ~14Mt) K 

arl d2(t) 
(15) 

whereg(t) = 2((2-K CEi’ Xit’)+(2-do) CL<’ tf)rf- 

tc(Cf”=;‘X,tf-A,,)-2(2-do). The roots of n(t) = 0, 
g(t) k b and rl = 0 are the stationary points of c on 
every radial directions. The second derivative at these 
stationary points can be written as 

H = d2(t) -%r n(t) F+r g(t) $$+g(t) n(t)) (16) 

The stationary point that corresponds to n(t) = 0 is 

r2 = 
-(2 - &) 

1 
K(X, - g.;’ A&) = 

r1 (17) 

The stationary point that corresponds to g(t) = 0 is 

r 
T- 

2(2 - KXO) - K(XO - cfc;’ X&,2) 

- (2 - K&)(1 + c:;;‘t;, + &(X0 - CL-’ A&) 
= l-2 

(181 \ I 



These stationary points are examined for two different 
cases which corresponds to the sign of Xe - CEy’ A,tf . 

Case 1: Xa - C;“<’ X,tz > 0 

The value I’1 of (17) is negative in this case, and 
hence this solution is discarded. For the second sta- 
tionary point rf = rz of (18), the second derivative is 

H = $&2-i& N-1 Xitf + (2 - &) Ci”=;’ tf) which 

is positive, hence this stationary point is a minimum. 
Therefore, there are no maxima for C in r1 E [0, 11. 

Case 2: Xa - C;NT’x,t,’ < 0 
First consider the stationary point of ri = 0. The 

second derivative at this stationary point is H = -4(2- 

&)(2(2-&) +K(C~=J~ Xi@--X0)) which is negative 
and this stationary point is a maximum. 

Substituting (17) into (18), the following coupled 
equation is obtained. 

r1 = i 
2r2+ i r2 = f. 2r1+i 

2 (I+ cE;l t;)r, - i 2p+~33rl- i 

(19) 
Therefore, since 0 < CEy’tF 5 1, I’1 4 [0, l] for 
rs E [0, l] and vice versa. i.e., there is utmost one 
stationary point in r1 E [0, 11. Suppose this stationary 

point is a maximum, since r1 = 0 is also a maximum, 
there should be a minimum between these two maxima 
which contradicts with the proof that there is utmost 
one stationary point in r1 E [0, 11. Hence, there are 
no maxima in r1 E [0, l] 

Therefore, considering case 1 and case 2, it can be 

concluded that there are no maximafor C in ri E [0, 11. 
0 

Proposition I implies that candidates for possible 
maxima of C are either when r1 = 0 (i.e h = fer) or 
when r1 = 1. When r1 = 0, the cost C can be written 
as 

(2 - Kg?--;’ Ait;)2 

(l= 1 + 2(1 - c;“;’ tf) 

N-l 

and c t” = 1 (20) 
i=l 

which is in the same form as (14), but it is in (N - 1) 
dimensions. Applying Proposition 1 again, the candi- 
dates for possible maxima of Cl are either when all ti 
are zero (i.e. h = fez) or when the associated radius 
is unity, i.e the maxima of <s 

c2 = 
(’ - ‘:c1”;’ Ait:)2 

1 + 2( 1 - CL;’ t:) 

and Netf = 1 (21) 

2=2 

which is again in the same form as (14), but it is in 
(N - 2) dimensions. We could apply Proposition 1 
repeatedly until the dimension become 2, i.e. 

Writing tN-1 = t and tN-2 = dm 

cN-2 = ((2 - KxN-2) + K(AN-2 - AN-l)t2)2 

1 + 4t2 - 4t4 

c23) 

and applying Proposition 1 yields candidates for pos- 
sible maxima of (23) which are either t = 0, i.e. h = 
feN-1 or t = 1, i.e. h = +eN. 

Therefore, possible candidates for the maxima of C 
are h = *e,,, i.e. h = {h : Ih = 0). 
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