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ABSTRACT

We propose a new family of mixed constant modulus
algorithms for the elimination of local minima asso-
ciated with the fractionally spaced constant modulus
algorithm in the presence of channel noise. A special
case of this family is the Leaky Constant Modulus Al-
gorithm (L-CMA). We show that L-CMA aims to min-
imise jointly the intersymbol interference (ISI) and the
noise gain introduced by the equalizer. Moreover, we
derive a suitable range of leakage factors for which all
local minima due to large noise amplification are elim-
inated.

1. INTRODUCTION

The Constani, Modulus Algorithm (CMA) is a widely
used blind equalisation algorithm due to its robust-
ness to various physical imperfections such as loss of
disparity, channel length under modelling and chan-
nel noise. For an invertible fractionally spaced chan-
nel with no noise, all minima of CMA perform equally
well [6]. However, when there is channel noise, var-
ious minima behave differently as the noise is ampli-
fied by the squared Iy norm of the equalizer impulse
response. Various techniques have been proposed to
obtain convergence to a global minimum in the pres-
ence of noise. Typically, a solution based upon cross-
correlation based equations, [4], and a channel surfing
and re-initialisation technique, [8], which unfortunately
require inversion of a matrix, have been proposed. In
[1], a mixture of constant modulus and cross correlation
criterion ([7] and [3]) was employed to obtain global
convergence, but this requires a computationally de-
manding search over all possible minima of CMA. We
propose a family of mixed constant modulus algorithms
which have the potential for global convergence by min-
imising the following cost
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where y(k) is the equalizer output and {w;} is the set
of M equalizer impulse response coeflicients, and  is
a mixing constant. We have shown elsewhere that the

case for p = 1 and p = 2 eliminates some of the lo-
cal minima associated with CMA [5], but we did not
produce then an adequate proof. For p = 2, (1) is a
mixture of constant modulus criterion and |w|3 which
is the noise amplification factor of the equalizer; hence
for a suitable value of k, (1) is expected to eliminate
local minima which have large noise amplification. The
algorithm update equation is given by

w(k+1) = w(k)(1-2ux)—4u(ly(k)]* ~1)y(k)x(k) (2)

where w(k) and x(k) are respectively the equalizer pa-
rameter vector and the regressor vector at sample num-
ber k, and p is a small step size. We refer to this
case as the Leakage Constant Modulus Algorithm (L-
CMA). Two sub-channels were chosen for our simula-
tion experiment, sub-channel 1 = [0.6098 — 0.4878]7
and sub-channel 2 = [0.9615 0.1923]7 and the chan-
nel noise power is taken to be 0.1 (i.e. SNR is 10 dB).
The performance surfaces associated with CMA and L-
CMA are depicted in Figure 1 for k = 0.26 (discussion
of the choice of k will be provided later). There are two
global minima and two local minima for CMA, but the
local minima have disappeared in L-CMA.
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Figure 1: The contours of the performance surfaces for
CMA and L-CMA

In the next section, we analyse the local conver-
gence behaviour of L-CMA and provide suitable bounds
of k to avoid ill convergence to local minima.



2. MINIMA OF CMA AND L-CMA

The constant modulus cost function for a BPSK s1gnal
of the combined channel
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where |hj3 is the squared {3 norm of {#;} and I char-
acterises a measure of ISI as follows
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where w is the equalizer parameter vector. Assume
that the channel convolution matrix C to be invertible.
Hence w = C~'h. Therefore, in principle, we have

It is convenient to analyse the above cost function in
terms of the radial and spherical components which is
mular to the analysis of CMA in the presence of noise

. Hence, write h = rhsuch that |[hj; = 1. Therefore,

J=(1+2L)r" + (k|CTh)Z - 2)r2+1  (T)

where I, = 1 — Y.7'7! 2. Minimisation with respect
to r yields
2~ K|C~h
2 2
= — 8
" 2(1+ 211 (®)
Corollary 1: There are no nontrivial solutions for L-
CMA if & > 2X 4. (CCT).
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From now onwards it is assumed that s is chosen

to be less than I—C——f Substituting (8) in (7) yields
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Hence arg miny, J = arg maxy, ¢, where
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For a suitable value of k, maximisation of ( means min-
imisation off, and |C~'h|%. ie. L — CMA aims to

minimise both the ISI and the noise amplification
factor.
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Corollary 2: For orthogonal channels, L-CMA has
no effect on the cost function other than a radial shrink-
ing of the position of the local minima.

0
Proof: For orthogonal channels CCT = A\~1] where
A is the eigenvalue of (CCT)~!. Therefore, [C~'h|3 =
_ 2
Aand { = (?_{_;‘}? Hence

arg minJy
® h

and rmin = V1 — 0.5\, hence the proof.
m]

An interesting consequence of Coroilary 2 is that for
orthogonal channels all minima perform equally well,
hence there is no need to eliminate them, and L-CMA
obeys this requirement Figure 2 depicts the perfor-
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Figure 2: The performance surfaces of CMA and L-
CMA

Corollary 3: For channels such that CC7T is a
diagonal matrix with distinct eigenvalues, a sufficient
condition on Kk to eliminate all minima except the two
global minima is

Q:

+(2-#]|C™ h|3)

h



2)‘mar2(CCT) < K < 2Ama11(CCT)

where Amaz1(CCT) and Apmar2(CCT) are respec-
tively the largest and the second largest eigenvalues of
ccrT.
0

Proof: Write [C™'h|3 = X\, + Z Y(Ai = Ag)h2
where }; is the " eigenvalue of (CCT) . Hence
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Lemma 1: The cost ¢ is maximised only when h =
+e,,l.e. h=1{h: I, =0}
i}

where e, is the v'* coordinate vector. The proof is
given in the Appendix. See also Figure 3 to view { for
N=3,2%=01 A =03, A = 0.6 and k = 0.05.
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Figure 3: The performance surface and the contours of
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Hence h is considered only along the direction of
the coordinate vector e,. Therefore, (8) yields r2,;, =
1—-0.5&A,.

When & is small (k < 2An(CCT)), there are N
possible nonnegative r? which are the 2N candidates
for possible maxima of {. As k increases the number
of nonzero r? decreases.

When 2X,022(CCT) < k < 2Apmar1(CCT), then
there is only one non negative r? which is the candidate
for the two global maxima on (, hence the proof.

0
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When & = 2nasa(CCT), rhy = 1= 5222233

min
and J = 1— mm The bias in the location of the min-
imum B(r) and in the cost B(J) can be respectively

T
written as B(r) = $22:2(S8 and B(J) = §222(E8r (2-
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izer response case, B(r) =

). For a two dimensional channel + equal-
—-X(lR) and B(J) = —X(lR) (2-
;{—(lR—)) and the bias decreases as the condition num-

ber x(R) (= i:—‘:(%g;%) increases. Suppose, Ao(R)
< Al(R) AN_Q(R) < /\N—l(R) and )\j+1(R) =
Ajpz(R) = -+ ~ Ay_1(R), it is suggested to choose
k = 2X,(R) as in this case the 2j worst minima will
disappear and the remaining 2( N — j) minima may per-

form approximately equally.

Even though the results provided in Corollary 3 are
valid only when (CCT)~! = QAQ” and all columns
of Q are the coordinate vectors, for the two dimen-
sional case, simulation results suggest that the above
results are valid for arbitrary channels with columns of

O which are onlv annrnv1mnfn]v f]qn rnnrr]nnafo vectors
g WIlCI ar€ Oy approximase: vECLOTS.

This is under current study.

3. CONCLUSION

We proposed and analysed a leaky constant modulus
algorithm which jointly minimises ISI and the amount
of noise amplification of the equalizer. L-CMA has po-
tential to eliminate undesirable local minima, which
have large noise amplification, associated with the frac-
tionally spaced CMA. Moreover, our analytical result
provides a range of leakage factor, &, to avoid 1ll con-
vergence of the equalizer to local minima.

Appendix: Proof of Lemmal

Writeh = [\/1 - SSN7 A2 By -+ hy_i], ie, ko
=y/1- vaz_ll h2, hence (12) can be written as

2=k AR
¢ 1+2(1—E,N=olh?) 19)
((2 = KAo) — & 051 (A — Ao)h2)?

1+4ZN1h2_22N 1h2 _221\1 1h4
and substituting h; = rit; and t = {t: Efv__ll 2 =1},
((2 = kXo) + Kr2(No — ZNlAt) n?(t)

¢= 1+44r2 — 2r4(1+ V1 ) T d(t)

(14)

and r; < 1 because Y7V A2 < 1.
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Proposition 1: There are no maxima for ¢ in ry €

(0,1].
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where g(t) = 2((2— KZN Yt +(2— m\o)z L4y

K(Efvzll)\,t,z /\0) 2(2 n)\o). The roots ofn( )=0,
g(t) = 0 and r1 = 0 are the stationary points of { on
every radial directions. The second derivative at these
stationary points can be written as

4 dg(t) on(t)
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The stationary point that corresponds to n(t) = 0 is
i) (17)
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The stationary point that corresponds to g{t) = 0 is
2 _ 2(2 - kAo) — 'ﬂ()\o - Y Ait)) _
s+ ) + e - T A,-t?h;)



These stationary points are examined for two different
cases which corresponds to the sign of Ao — Z,__ll Mt2.

Case 1: A\g — vaz_ll At2 > 0

The value T'; of (17) is negative in this case, and
hence this solution is discarded. For the second sta-
tionary point r? = T of (18), the second derivative is
H= ;f’” 2=k NS N2+ (2— ko) N5 ) which
is pomtlve hence this atatlonary point is a minimum.
Therefore, there are no maxima for ¢ in r; € [0, 1].

Case 2: o — YN\t < 0
First consider the stationary point of r; = 0. The
second derivative at this stationary point is H = —4(2—

KA0)(2(2— KXo) + k(307 Ait? — X)) which is negative
and this stationary point is a maximum.

Substituting (17) into (18
equation is obtained.

), the following coupled
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Therefore, since 0 < Z 2 < 1,00 ¢ [0, 1] for
T, € [0, 1] and vice versa ie., there is utmost one
stationary point in r; € [0, 1]. Suppose this stationary
point is a maximum, since r; = 0 is also a maximum,
there should be a minimum between these two maxima
which contradicts with the proof that there is utmost
one stationary point in r; € [0, 1]. Hence, there are
no maximain 7y € [0, 1]

Therefore, considering case 1 and case 2, it can be
concluded that there are no maximafor { inry € [0, 1].

a

Proposition 1 implies that candidates for possible
maxima of ¢ are either when ry = 0 (i.e h = *e;) or
when 71 = 1. When r; = 0, the cost { can be written
as

G = (2—-~ ZN b it2)2
1=

L4201~ 35" )
which is in the same form as (14), but it is in (N — 1)
dimensions. Applying Proposition 1 again, the candi-
dates for possible maxima of ; are either when all ¢;
are zero (i.e. h = +ey) or when the associated radius
is unity, i.e the maxima of (>

and ) t7=1 (20)

9 — qu/\tz N-1
= B F 2z i and 3 #F=1 (21)
1+2(l_21=2 ti) 1=2

which is again in the same form as (14), but it is in
(N — 2) dimensions. We could apply Proposition 1
repeatedly until the dimension become 2, i.e.

R Q—nz
N-2 =
1+2(1— fi;_ztn

5 Ait2)? N-l

and Z 2 =1

r, = L
N,—1 2+, -1
(19)

Writing ty_1 =t and ty_o = /1 —#2

((2 - KZ/\N__z) + K()\N_z - )\N_l)ifz)2
1+ 482 — 444

(N—2 = (23)
and applying Proposition 1 yields candidates for pos-
sible maxima of (23) which are either ¢ = 0, i.e. h =
teny_jort=1,1e h=+Hey.

Therefore, possible candidates for the maxima of ¢
are h = +e,,i.e. h={h: [, =0}.
a
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