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ABSTRACT

In order to develop a cheap, efficient and reliable
diagnostic tool for the detection of temporomandibular joint
disorders (TMD), sounds from the temporomandibular joint
(TMJ) are recorded using a pair of microphone inserted in the
auditory canals. However, the TMJ sounds originating from
one side of head can also be picked up by microphone at the
other side. Blind source separation (BSS) is thus proposed as
a method to recover the original sound. The authors propose
to use non-casual filters for the separation of TMJ signals.
The algorithm is based on information theory and is an
extension of early work by Torkkola. The separation was
successful and the output can now be used for subsequent
analysis of TMJ sounds.

1. INTRODUCTION

1.1 Temporomandibular Joint (TMJ)

The TMJ is the joint which connects the lower jaw,
called the mandible, to the temporal bone at the side of the
head. This joint is very important with regard to speech,
mastication and swallowing. Any problem that prevents this
system from function properly may result in
temporomandibular joint disorder (TMD). Symptoms include
pain, limited movement of the jaw, radiating pain in the face,
neck or shoulders, painful clicking, popping or grating sounds
in the jaw joint during opening and/or closing of the mouth.

1.2 TMJ Sound Recording

TMJ sounds during jaw motion are important
indication of dysfunction and are closely correlated with the
joint pathology [10]. The TMJ sounds are routinely recorded
by auscultation and noted in dental examination protocols.
However, stethoscopic auscultation is very subjective and
difficult to document. The interpretations of the sounds often
vary among different doctors.

Early detection of TMD, before irreversible gross
erosive changes take place, is extremely important. A cheap,
efficient and reliable diagnostic tool for early detection of
TMD is being developed using TMJ sounds recorded with a
pair of microphones placed at the openings of the auditory
canals. The sounds are analyzed and classified into different
classes based on their time-frequency reduced interference
distribution (RID) [11]. Statistical correlations between
different type of sounds and joint pathology can be used as a
diagnostic tool for TMD.

1.3 Problems and Solution: Blind Source

Separation (BSS)

Electronic recording offers some advantages over
stethoscopic auscultation recording. Electronic recording of
TMIJ sounds allows the clinician to store the sound for further
analysis and future reference. Secondly, the recording of TMJ
sounds is also an objective and quantitative record of the TMJ
sounds and thus changes in joint pathology. The most
important advantage is that electronic recording allows the
use of advanced signal processing techniques to the automatic
classification of the sounds.

The auditory canal is an ideal location for the non-
invasive sensor (microphone) to come as close to the joint as
possible. The microphones are held in place by earplugs made
of a kneadable polysiloxane impression material (called the
Reprosil putty and produced by Dentsply). A hole is punched
through each earplug to hold the microphone in place. The
earplug also reduces the ambient noise in the recordings.

One common and major problem in both
stethoscopic auscultation and digital recording is that the
sound originating from one side will propagate to the other
side, leading to misdiagnosis in some cases. It is shown that
short duration TMJ sounds (less than 10ms) are frequently
recorded in both channels very close in time. When the two
channels show similar waveforms, with one lagging and
attenuated to some degree, it can be concluded that the
lagging signal is in fact the propagated version of the other
signal [9].
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Figure 1. TMJ sounds at two channels.

This observation is very important. It means that a
sound heard at auscultation on one side may have actually
come from the other TMJ. This has great clinical significance
because it is necessary to know the true source of the recorded
sound, for example in diagnosing so called disk displacement
with reduction [9].



The TMJ sounds can be classified into two major
classes: clicks and crepitations. A click is a distinct sound, of
very limited duration, with a clear beginning and end. As the
name suggests, it sounds like a "click". A crepitation has a
longer duration. It sounds like a series of short but rapidly
repeating sounds that occur close in time. Sometimes, it is
described as “grinding of snow” or “sand falling”.

The duration of a click is very short (usually less
than 10ms). It is possible to differentiate between the source
and the propagated sound without much difficulty. This is due
to the short delay (about 0.2ms) and the difference in
amplitude between the signals of the two channels, especially
if one TMJ is silent. However, it is sometimes very difficult to
tell which is the source signal from the recordings. In Figure
2, it seems that the dashed line is the source if we simply look
at the amplitude. On the other hand, it might seem that the
solid line is the source if we look at the time (it comes first).
Blind Source Separation (BSS) can be a solution to this
problem. BSS is needed because both the sources (sounds
from both TMJ) and the mixing process (the transfer function
of the human head, bone and tissue) are unknown. If BSS is
used, one output should be the original signal and the other
channel should be the noise. Then it is very easy to tell which
channel is the original sound.
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Figure 2. Sound recording of TMJ.

Furthermore, in the case of crepitation sounds, the
duration of the signal is longer, and further complicated by the
fact that both sides may crepitate at the same time. BSS is
proposed as a means to recover the original sound for each
channel.

2. BLIND SEPARATION
ALGORITHM

2.1 “Infomax” Algorithm

BSS is the main application of independent
component analysis (ICA), which reduces redundancy
between signals and make them  “as independent as
possible”. In BSS, second order statistics are inadequate to
reduce redundancy between the input signals. Higher-order
statistics are required for redundancy reduction and these are
determined mainly in two ways. The first is the explicit
estimation of the cumulants and polyspectra [6],[7]. The
second is by obtaining higher-order statistics through the use
of static nonlinear functions [2],[3].

Bell and Sejnowski [1] proposed an information-
theoretic approach for blind source separation (BSS), which is
refereed to as the “Infomax algorithm”. Information theory
can be used to unify several lines of research [4],[5] and
different theories recently proposed for independent
component analysis (ICA), leading to the same iterative
learning algorithm for BSS.

2.2 Separation of Convolutive Mixture

The initial algorithm of Bell and Sejnowski [1]
deals with the instantaneous mixture problem. The algorithm
was further extended by Torkkola for the convolutive mixture
problem.

Given m measured signals x;(k), which are

combinations of » independent sources s;(k), the aim of
blind separation is to produce » outputs y;(k), which
recreate the »n yi (k) =s51(k),
Yo (k) =55 (k) , -, yo(k)=s5,(k). Nothing can be
assumed about the sources except that they are statistically
independent.

Torkkola [8] suggested the feedback structure (see

Figure 3 for m=n=2) for the separation of convolutive
mixture.
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Figure 3. Feedback structure for the separation of
convolutive mixture.

The learning rule for the convolutive mixture can
follow the same steps as the instantaneous case [1].
Minimizing the mutual information between outputs y; and
¥, can be achieved by maximizing the entropy at the output.
Assuming causal FIR filters for wy;,
following operations in the time domain:

the network performs the

Ly L,
w () = Zwlklxl(f k) +2W1kzuz(f k)
%=0 =1
1
LZZ LZI ( )
up (1) = szkzxz(f k) +ZW21<1M1(T k)
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where wy; is the k™ tap of the filter from source j to
sensor i and Ly is the filter length for the respective filter.

The relationships between the mixing filter and the
separation filter can be expressed in z transform [8]:

M@ =437 Wa@=-A@m@™
Wys(2)= Ay ()" Way(2) = =4y (2) Axy (2) 7!
This is a network which combines the separation

and deconvolution problem. Maximizing the entropy at the
output will result inW;; and W,, not only inverting A;; and



Ay, , but also whitening the sources. This can be avoided by
forcing W;; and W,, to mere scaling coefficients. In the ideal

case, W;; and W,, will have the following solutions:

Wi(2)=1, W,(2)=-A,L(2) Ay )"

(3)
Wy (2)=1, Wy (2)=—Ay (DA (2)"

The learning rules for the separation matrix are:
Vwigr ¢ (1=2y;)%; +1/w;g;
Vwigi oo (1=2y;)x; (1= k) C))
Vw,-kj oc (1— Zy, )Mj (T - k)

where k=0, 1,2, Ly

3. SEPARATION OF TMJ SIGNALS
3.1 TMJ Sounds

Figure 4 shows how the TMJ sounds are mixed.
Sounds originating from a TMJ are picked up by the
microphone in the auditory canal immediately behind the
joint and also by the microphone in the other auditory canal as
the sound travels through the human head.

Human Head

Figure 4. Mixing model of TMJ sounds.

Figure 5 shows a typical recording of TMJ
crepitation sounds from the two microphones. Each recording
is a mixture of the two TMJ sources.
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Figure 5. Typical TMJ signals (crepitation).

If we zoom in on Figure 5 near 0.045s, the signals
are shown in Figure 6 for both channels (solid line for channel
one and dashed line for channel two). It is difficult to tell how
much of the signal in each channel comes from the ipsi (same
side) TMJ and how much comes from the contra (opposite)
T™I [9].

1000

id0202002 wav

am piiuae

-1000 F

-1600
0.042 0.044 0.046 0.048 0.068 0.062

tim e (s)

Figure 6. Signals near 0.045s.

If we look at the signals near 0.35s (Figure 7), it is
even more difficult to differentiate the source from the
propagated component because the signals are almost 180 °©
out of phase. It is almost impossible to determine the short
time delay and difference in amplitudes between the two
signals.
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Figure 7. Signals near 0.35s.

3.2 Blind Source Separation Using Non-casual
Filter

Torkkola’s algorithm [8] works only when the
stable inverse of the direct channel filters ( A;; and A,,)

exist. This is not always guaranteed in real world systems. In
the separation of TMJ sound signals, the direct channel is the
path from the source (TMJ) through the head tissue to the
skull bone, then to the air in the auditory canal directly
behind the TMJ and finally to the ipsi microphone.

However, even if a filter does not have a stable
casual inverse, there still exists a stable non-casual inverse.
Therefore, the algorithm of Torkkola can be modified and
used even though there is no stable (casual) inverse filter for
the direct channel.

The relationships between the signals are now
changed to:

M-1 M-1
u (1) = Zwlklxl (1—k)+ Zwlkzuz (1-k)
k=M k=M
L o )
1y (1) = szkzxz (t-k)+ szklul(’_k)
k=—M k=M

where M is half of the total filter length and the zero lag of
the filter isat M +1.



The derivative of the learning rule can follow the
same procedure as in Torkkola [8]. According to equation (5),
only the coefficients of W), and W, have to be learned. The

learning rule is the same in notation but different in nature
because the values of & have changed:

Vg o (1=2y)u; (1 =k) ©6)
where k=-M,-M+1,--- M-1.

33 Separation Result

The length of the filter used for the separation of
TMJ signals is 160. The learning process is stopped when
changes in the coefficients of the filters are within 0.001. The
signals shown in Figure 5 are the candidate signals to be
separated by the BSS algorithm. The output is shown in
Figure 8. The signals are normalized to have a unit variance
because BSS can only determine the signals up to a scalar
factor.
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Figure 8. Signals after separation.

In order to see the effect of the separation, let us
look at the signals near 0.35s (Figure 9). It clearly shows that
the signal only comes from the first channel (solid line) and
the second channel (dashed line) is basically silent. From
Figure 8, it is also clear that the source is now coming from
channel two at the time near 0.045s.
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Figure 9. Signals after separation (near 0.35s).

4. SUMMARY AND DISCUSSION

Blind source separation was successfully applied to
the separation of TMJ signals. This method was proposed
because it is not guaranteed that the filters of direct channels
have stable inverses. The result is satisfactory. The source
signals can now be used for further analysis. This ensures that
the signals used for subsequent classification are the real
source signals, and not contaminated by the sounds
propagated from the contra side.
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