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ABSTRACT 

Analysis of a dynamic hand gesture requires processing a 
spatio-temporal image sequence. The actual length of the 
sequence varies with each instantiation of the gesture. We 
propose a novel, vision based system for automatic inter- 
pretation of a limited set of dynamic hand gestures. This 
involves extracting the temporal signature of the hand mo- 
tion from the performed gesture and is subsequently ana- 
lyzed by a finite state machine to automatically interpret 
the performed gesture. 

1. INTRODUCTION 

The use of hand gestures provides an attractive alternative 
to cumbersome interface devices for human-computer inter- 
action (HCI). In particular, visual interpretation of hand 
gestures can help in achieving the ease and naturalness de- 
sired for HCI. This has motivated a number of researchers 
concerned with the computer vision-based analysis and in- 
terpretation of hand gestures (for a recent survey of the 
literature on visual interpretation of hand gestures see [l]). 
Currently, however, this type of interaction is largely un- 
available to intelligent systems. An important new applica- 
tion of machine vision, therefore, is to extend the interface 
between man and machine, allowing machine to directly 
perceive what its operator is doing. The ability to follow a 
hand moving in the space and to recognize a particular mo- 
tion as a meaningful gesture is, therefore, an essential step 
in intelligent system design and natural human-machine in- 
teraction. 

An automatic interpretation of general hand gestures 
is difficult [2, 3, 4, 5, 61, because it involves analyzing the 
human hand which has a very high degree of freedom and 
the mapping of a human gesture onto a particular system 
function is very difficult. Reasons for this difficulty include 
individual variations in the exact gestural movement, the 
problem of knowing when a gesture starts and ends, and 
variations in the relative positions of other body parts which 
might help to identify a gesture but are not measured. How- 
ever, the problem can be simplified with the context of a 
particular application to develop an appropriate set of ges- 
tural commands [7]. In the following section we describe 
the modeling of dynamic hand gesture to map a subset of 
gesture to a meaningful system command. 
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2. MODELING OF DYNAMIC HAND 
GESTURE 

The gesture is body specific, temporally variable and sub- 
ject to co-articulation effects [8]. Since human gestures are 
dynamic processes, it is important to consider the tempo- 
ral characteristics of gestures. In the constrained case only 
a small subset of hand gestures is sufficient to interface a 
machine. Hence, only the following gestures, namely, ‘come 
closer’, ‘go far’, ‘move right’, ‘move left’ and ‘emergency 
stop’, have been considered for the current implementation. 
Even in the literature, most of the analyses have been re- 
stricted to dealing with a similar set of gestures. 

Figure 1: Illustration of a few examples of oscillatory hand 
gestures. The solid line indicates the start of the gesture 
along the direction of the arrow and the dashed line indi- 
cates the come-back phase of the oscillatory gesture. Loop- 
ing indicates the oscillatory hand motion. The motion pro- 
file of the ‘move right’ and ‘come closer’ are opposite to 
that of ‘move left’ and ‘go far’, respectively, and vice-versa. 
Emergency stop does not have any oscillatory motion. 

In order to circumvent various drawbacks of a dynamic 
hand gesture understanding system, we now examine the 
basic characteristics of the set of gestures considered here. 
Let us consider a person performing a ‘come closer’ gesture 
by sweeping one hand repeatedly - first quickly towards 
his body and then slowly away. It may be noted that this 
typical pattern produces a unique temporal signature. Sim- 
ilarly, in human communication we perform the ‘move right’ 
gesture by moving the hand first towards the right direction 
and then to the left and so forth. We start from an arbi- 
trary spatio-temporal position and perform it. We would 
like to exploit the temporal signature thus generated for the 
interpretation purpose. Let us now explain how we define 
such a temporal signature unambiguously. 

Based on the above study we have constructed a ges- 
ture lexicon for the subset under consideration and is shown 
in figure 1. The iconic lexicon shows the motion profile of 



the hand (called the knowledge) involved with each ges- 
ture and this profile is then exploited for the signature rep- 
resentation and subsequent interpretation purposes. This 
understanding leads us to construct a set of deterministic 
finite state machines to represent the temporal signatures, 
and they satisfy the corresponding motion profiles of the 
gestures shown in figure 1. By and large these finite state 
machines are self explanatory and are shown in figure 2. 
All finite state machines have five states namely, start(S), 
up(U), down(D), left(L) and right(R). However, only two 
to three of these states are used to represent a gesture sig- 
nature. For example, a ‘move right’ gesture may have a 
signature of the form ‘S-R-L-R-L-R-L’. The self loops are 
essential to accommodate the idleness of the hand move- 
ment while changing the direction of hand waving. This is 
due to the inertia of motion and would vary from person to 
person and for each instantiation of the gesture. To further 
illustrate, the ‘come closer’ gesture may have the signature 
‘S-U-D-U-D-U-D’. The length of the signature pattern does 
not depend on the temporal duration over which the ges- 
ture is performed, but depends on the number of changes 
in the direction of motion for the oscillatory gesture. Given 
the gesture data the temporal signature extraction would 
involve processing the image sequence to estimate the dom- 
inant direction of motion (such as U, D, L, R) for each 
subsequence of the temporally segmented data. 
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Figure 2: Finite state automaton models constructed for 
gestures shown in figure 1. A 1 indicates motion and 0 
indicates no motion. The solid line indicates the start of 
the gesture along the direction of the arrow and the dashed 
line indicates the come-back phase of the oscillatory ges- 
ture. Here the states are Start(S), L(left), R(right), U(up) 
and D(down). Self state transition is used to accommodate 
the zero motion subsequence that may occur due to the 
inaptness of the creator during the gesture. 

The most desirable part of the finite state modeling is 
that it makes the system adaptive to the meaning of ges- 
ture. Adaptation with the cross cultural gesture can be 
achieved by redefining the finite state machines according 
to the thumb rules of the society. The inclusion of new 
gestures involves simply the construction of additional fi- 
nite state machines portraying the corresponding motion 
profile. 

3. GESTURE UNDERSTANDING 

The essential components of the proposed vision based ges- 
ture interpretation system are shown in figure 3. The sys- 
tem has two main modules, namely, i) temporal signature 
extraction and ii) interpretation of the extracted signature. 
The first module extracts the temporal signature embedded 
in the gesture while the interpretation module interprets 
the extracted temporal signature. In the heart of the tem- 
poral signature extraction unit, there should be a motion 
sensor which can detect the direction and the speed in real 
time. Unfortunately, currently available methods are not 
amenable to a real-time implementation. Hence, we seek a 
faster method to extract the temporal signature (see section 
3.1). 

Figure 3: The proposed gesture interpretation system. 

The output of a finite state machine shown in figure 2 
and described in the previous section responds to the tem- 
poral signature of the gesture thus obtained and the iden- 
tification involves verifying the corresponding production 
rule of the performed gesture. The introduction of finite 
state machines makes the system insensitive to the start 
and the stop positions of the gesture. The key advantage of 
this approach is that no trazning concept is involved. The 
system is highly reconfigurable as the inclusion of new ges- 
tures needs only to model them suitably using additional 
finite state machines. 

3.1. Temporal Signature Extraction 

To extract the temporal signature, the system first tempo- 
rally segments the gesture data into sub-sequences involving 
a uniform dynamics, i.e, motion in only one direction (for 
example, left or right, etc.). Once the temporal segmenta- 
tion is done we estimate the velocity for each subsequences 
using an iterative algorithm described in Section 3.1.2. The 
recovered motion description (U/D/R/L) from all the sub- 
sequences are coalesced together to form the temporal sig- 
nature. 

3.1.1. Temporal Segmentation of an Image Sequence 

Change detection by subtraction of successive frames is a 
common practice in motion analysis. Variations of this ap- 
proach use Laplacian of a Gaussian (LOG) operator before 
calculating the difference image or use the second order tem- 
poral derivative and detect the abrupt change [9]. This can 
be effectively achieved by convolving the intensity image 
I(z>y,t) with a LOG operator in the temporal direction 
yielding the temporal zero crossing i(z, y, t). 

f(z,y,t) = y *I(o,y,t), 



where G(t) = &exp $ and o is the spread of the 
( > 

Gaussian function. The motion of an edge in the image 
produces a temporal zero crossing in I(z,y,t) at the loca- 
tion of the edge. Global and temporal intensity changes do 
not result in such zero crossings. It is sensible to assume 
that at the motion breakpoint there will be very insignifi- 
cant motion which implies that ideally there will be no zero 
crossing at motion break point. Given this background, we 
proceed as follows: 

l Obtain successive difference and temporal zero cross- 
ing images for the sequence. 

l If there is no zero crossing or the number of zero 
crossings is less than a threshold, mark the frame for 
temporal segmentation. 

3.1.2. Dominant Motion Estimation Usrng Mohon En- 

ergy 

Let us consider an object moving with an uniform veloc- 
ity vZ and vi, in the x and the y directions, respectively, 
and we are interested in detecting the motion. Such a se- 
quence 1(x, y, t) can be described by I(z, y, t) = I(z, y) * 
6 (x - v,t, y - v,t). In the Fourier domain the relation is 
given by 

i(fz, f,, ft) = i(fz, fYM(fdh + f,%/ + ft) 1 (2) 

where fz, f, and ft are the spatial and the temporal Fourier 
variables, respectively and f( fz, f,) is the Fourier transform 
of I(z, y, 0). Equation (2) implies that an object moving 
with an uniform velocity occupies only an n - 1 dimensional 
space in the n dimensional space in Fourier domain. In 
a two or three dimensional space, it is a line or a plane, 
respectively. The equation of the plane is directly given by 
the argument of the 6 function 

ft = - (fxvz + fyvy). (3) 

Based on the above observation an interesting set of 
filters originate from the models used to describe motion 
in biological visual systems. Gabor-like quadrature filters 
are used to determine the image motion from which the 
term motion energy [lo] is coined. We would like to em- 
phasize that in our problem (temporal signature extraction) 
the idea is to only detect the direction of dominant motion 
(spatio-temporal orientation). The basic idea is to formu- 
late the problem in an optimization framework and we use 
a gradient descent method to arrive at the desired solution. 
We use the motion energy itself as the cost function to get 
an estimate of center frequencies fz,, fv,, ft, where the mo- 
tion energy is maximum. Hence, the cost function can be 
written as 

The center frequency of the band pass filter for which the 
motion energy is maximum can be found iteratively. Once 
the filter center frequencies are known the dominant mo- 
tion (local orientation) of the signal in frequency domain 
is known. We use the above algorithm to estimate domi- 
nant motion of each sub-sequence to obtain the temporal 

signature which was subsequently used by the deterministic 
finite state machine to interpret the gesture. 

4. EXPERIMENTAL RESULTS 

The computational representation scheme proposed in this 
paper involves temporal signature extraction from a per- 
formed gesture. A few sample frames from ‘move right’ and 
‘come closer’ gestures are shown in figure 4 for illustration. 

Figure 4: The top row shows a few sample frames from the 
‘move right’ gesture. The ‘move left’ gesture is opposite to 
‘move right’ gesture and is not shown. Below, one cycle of 
the ‘come closer’ gesture is shown. The ‘go far’ gesture is 
similar. 

The first step in temporal signature extraction involves 
finding the motion breakpoint of the gesture. The applica- 
tion of the proposed temporal segmentation algorithm (see 
section 3.1.1) detects the motion break point. Figure 5 
shows the result of detecting motion breakpoint for ‘come 
closer’ gesture (see figur 4 for the corresponding data). It 
depicts the detected temporal zero crossings in all frames 
(only one cycle has been displayed for the sake of clarity). 
Larger the motion, higher is the number of zero crossings. 
Figure 6 shows the plot of number of frame - number of zero- 
crossings. From figures 5 and 6 it is evident that frame num- 
ber 15 has a very few zero crossings and all the other frames 
has quite a good number of zero crossings. After threshold- 
ing we declare this frame as the motion break point. This 
implies that frames 0 - 14 corresponds to a temporally seg- 
mented sub-sequence displaying a motion sequence along a 
particular direction (down or closing the hand). Similarly, 
frames 16 - 24 corresponds to another subsequence display- 
ing up motion or opening the hand. 

The motion estimation scheme described in the previous 
section is used to estimate the average velocity and direc- 
tion of such temporally segmented motion sub-sequences. 
Experimentally we found that the proposed scheme yields 
correct estimates when they are provided with good initial 
conditions. This is due to the fact that in a real image 



Figure 5: Temporal zero crossings images obtained for the 
‘come closer’ gesture. Only 24 frames from a image se- 
quence of 96 frames has been shown for the sake of clarity. 
Frame number 15 has been marked for motion breakpoint. 
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Figure 6: Plot of number of zero-crossings against the num- 
ber of frame for the ‘come closer’ gesture. It is clearly ev- 
ident that the frame 15 corresponds to the motion break- 
point. 

sequence the motion is hardly uniform. The motion pa- 
rameter (direction information) thus obtained from each 
subsequence is coalesced together to form the temporal sig- 
nature. The extracted temporal signature obtained for the 
above ‘come closer’ gesture is S-U-D-U-D-D-U-D-U-D-U-U- 
D and for the ‘move right gesture’ is S-R-L-L-R-R-L-R-L- 
R-L-L-R-R-L, where ‘S’ indicates start of the gesture, ‘U’, 
‘D’, ‘R’, ‘L’ indicates up, down, right and left-ward mo- 
tion, respectively. We obtain similar results for all the other 
gesture sequences. In order to provide a good initial esti- 
mate of the center frequencies of the bandpass filters, we 
run the optimization algorithm several times with different 
initial guesses and select the direction which results most 
frequently. Having obtained the temporal signature for a 
test gesture, we verify which production rule for a partic- 
ular gesture is satisfied. The test gesture is now identified 
by matching the production rule. In all our experiments we 
identified all test gestures correctly. 

5. CONCLUSIONS 

Understanding of dynamic hand gestures requires an anal- 
ysis of spatio-temporal image sequences. The actual length 
of the sequence varies with each instantiation of the gesture. 
The key motivation to solving the problem is to translate 
the richness of human gestural communication power to a 
computer for a better HCI. To find the velocity and hence 

to extract the temporal signature, our effort involved an 
optimization of the motion energy. The proposed itera- 
tive scheme is computationally efficient compared to the 
traditionally used quadrature filter based methods, albeit 
far from being real time. The proposed motion estimation 
scheme is sensitive to the choice of the initial guess for real 
image sequences. The finite state machine modeling of the 
dynamic hand gesture helps in interpreting the gesture ac- 
curately and also avoids the computationally intensive task 
of image sequence warping. As we work with monocular 
image sequences and the optimization scheme is not pro- 
hibitively demanding, the approach may be suitable even 
for a moderate hardware setup. Additionally, our formula- 
tion does not impose any condition on start and stop po- 
sitions of the gesture. The system is highly reconfigurable 
as the inclusion of a new gesture needs only to model it 
appropriately by an additional finite state machine. 
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