CLOSED-FORM AND REAL-TIME WORDLENGTH ADAPTATION

Paul D. Fiore, Li Lee

Sanders, A Lockheed Martin Company, Nashua, NH
and Massachusetts Institute of Technology, Cambridge MA
pfiore@sanders.com, llee@mit.edu

ABSTRACT

FPGA and configurable computing-based DSP algorithms
have demonstrated significant performance improvements
over software implementations. This has caused recent re-
newed interest in developing or mapping DSP algorithms
to custom hardware. An algorithm will be successfully
mapped if the intermediate wordlengths can be reduced to
maintain reasonable hardware size. In this paper, we con-
sider linear hardware cost functions, for which we can derive
closed-form expressions for the reduced wordlengths. We
then apply these results to an adaptive LMS filter, where
we adapt not only the tap weights, but also the wordlengths
as a function of the data in real-time.

1. INTRODUCTION

Recent advances in field programmable gate array (FPGA)
[1, 2] and configurable computing technology [3, 4] have
caused renewed interest in custom digital signal process-
ing (DSP) hardware designs. For many DSP problems, re-
duced precision arithmetic will maintain acceptable system
performance. FPGA-based DSP computers can be pro-
grammed to bit-level granularity, allowing for a more ef-
ficient implementation than is possible for a conventional
programmable computer [5]. A mapping of an algorithm
to an FPGA architecture will be successtul if the designer
can limit wordlength growth without sacrificing algorithm
performance.

In order to reduce hardware requirements, one must
round or truncate data at various points throughout an al-
gorithm. Many operations such as multiplication or accu-
mulation can greatly expand the wordlength of the data.
If these operations are cascaded, then without some form
of wordlength reduction, excessive hardware growth re-
sults. Wordlength reduction introduces noise into the data
stream, so the designer must balance the need for an effi-
cient implementation with output quality.

In order to perform this tradeoff, we treat the special
case of a linear hardware cost metric (which can be ap-
plied to adders and multipliers). We model the effect of
truncation as the injection of additive white uniform noise,
which leads to a convenient performance metric. The al-
gorithm wordlengths are determined by minimizing one of
these two metrics subject to constraints on the other. In our
previous work [5] we developed an ad hoc method for this
optimization; in this paper, we derive closed-form expres-
sions for the optimal wordlengths, which would be suitable
for any FPGA or ASIC technology. Additionally, we then
show that these expressions can be efficiently calculated in
hardware, leading to wordlengths that change in real-time
as a function of the data. We show that this result can be
directly applied to several adaptive FIR filter architectures.

2. CLOSED-FORM SOLUTION

We consider two possible formulations. In the first, the
hardware cost is minimized subject to constraints on the
output noise variance. In the second, the output noise vari-
ance is minimized subject to a hardware constraint. In both
cases, the unknown variable is the vector of wordlengths
b = [b1,bs,...,bx]" to be assigned at the desired locations
in the algorithm. The hardware cost function C'(b) and the
output noise variance V(b) takes the form

Cb) = cbi, V()= a2 (1)

The form of V(b) results from a linearization of the algo-
rithm that is being mapped about an operating point. Es-
sentially, the o; are scaled versions of the maximum squared
slope of the transfer function from the point of rounding to
the algorithm output. The 272% term results from assum-
ing uniform additive noise [6]. Notice that C(b) is a linear
function of b, and V(b) is a convex function of b. We
will assume that the cost coefficients ¢;, and the variance
injection scale factors «; are known.

2.1. Minimize Cost Subject to Variance Con-
straints

In this section we consider the problem of minimizing the

hardware cost subject to a constraint on the maximum al-

lowable noise variance:

min C(b), @
subject to V(b) < A and b > bmyin > 0.

Notice that we have not imposed integrality on the b;’s,
and that this is the optimization of a linear function over a
convex set.

To obtain a closed-form expression, we first relax the min-
imum wordlength constraints in (2). Using a Lagrange mul-
tiplier, we minimize

N N
J=Zcibi +)\Zai2_2bi. (3)
i=1 i=1

Taking the derivative and setting equal to zero yields

O _ o+ a2 In(2)(-2) =0, (4)
oby

which gives

Ck 2by,

We can thus equate the right-hand side of (5) for different
values of k, specifically

G921 = Ch g2 (6)
a1 ag

Rearrangement gives

@)= o

Taking logarithms and rearranging finally gives

C1 Qg

1
= iy |
by =b1 + 5 0gs (a1 ”

) k=1,...,N. (8

Thus, (8) allows us to find all the wordlengths from knowl-
edge of b1. We can actually derive b1 as well as the remain-
ing by by substituting (8) into (2):

A = ZN ai2_2b"

i=1

=3 a7 (Bt) (9)
- g=1 "%
=2"%n (Z—ll §V=1 C;-
Solving for b1,
1 1 —
!
b = 510g2 (C—IIZ c,-) . (10)
i=1

From (8) we therefore have

N
1 a1l 1 (01 Oék)
b, = =1 —_— ; =1 —_— . 11
k 2082<01A C>+20gz - (11)

i=1

Finally, we simplify this expression as

= Liog, (%) 4 Liog, (225
bk—210g2(0k)+210g2(1) (12)

It is important to note that (12) separates the wordlength
formula into a variable portion (e.g. changes with k), and
a portion that is common to all bg.

A shortcoming of (12) is that the wordlengths may vio-
late the minimum wordlength constraints of (2). We resolve
this by an iterative approach in which those b;’s that vio-
late the constraint are fixed to be by,ip k, and then (12) is
applied again to those variables which are not already as-
signed. Another problem is that the b;’s are not necessarily
integral. This is easily remedied by taking the ceiling of the
expressions.

2.2. Minimize Variance Subject to Cost Con-
straints

Now we consider the problem of minimizing the roundoff
noise variance subject to a constraint on the maximum al-
lowed hardware cost:

min V(b),

subject to C(b) =C and b > bmia > 0. (13)
Notice that again we have not imposed integrality on the
b;’s, and that this is the optimization of a convex function
over a linear space, for which well-defined optimality con-
ditions exist.
Relaxing the minimum wordlength constraint of (13) and
using a Lagrange multiplier, we obtain exactly the same

Increase

Bits / -~ 3

o
— Decrease

7

o e v
-

a—
31—
2= Fixed Portion
-

Fixed Portion

by by by by bs bg by by by by by by by bs bg by by by

Time 1 Time 2

Desired increases

Reduce fixed portion
make cost > G

to make cost <

Bits
a—
P
6—
s—
-
3—
2= Fixed Portion ¥
-

o—

Fixed Portion

by by by by bs bg by by by by by by by bs bg by by by

Time 3 Time 3

Figure 1. Adaptively varying wordlengths.

expression as in (8). We now perform manipulations similar
to those used to derive (12), obtaining

1 c;
1 ap , C+adcilog gt
b = =1 (—) i
k 9 0g5 h + Zci

We again ensure that the wordlength allocations do not
violate the minimum wordlength constraints of (13), and
also ensure integrality by taking the floor of the results.

3. REAL-TIME WORDLENGTH
ADAPTATION

Comparing (14) to (12), we see that the components that
vary with k are identical. We can take advantage of
this for an adaptive computing implementation, where the
wordlengths are to be calculated as a function of the data
in real-time.

For example, suppose we are operating in a regime where
the costs c¢;, the variance injection parameters «; and the
desired variance A are such that reasonable wordlengths re-
sult. In this case, the total cost will be less than C. The
design method will produce by’s that minimize the total
hardware cost, allowing perhaps other hardware algorithms
to share the hardware computing resources, or perhaps al-
lowing for a lower power utilization. If only the a4’s are
allowed to vary, then the common term in (12) remains
constant and can be precalculated.

If the data becomes worse in some way, causing the cg
and a;’s to be less favorable, the total cost may exceed C.
In this case we could use (14) to calculate the wordlengths.
However, because the k-varying portions of (12) and (14)
are identical, the common term in (14) must act to uni-
formly reduce the wordlengths so that the total cost is
less than C. We thus do not need to calculate that com-
mon term; we merely reduce each wordlength by the same
amount until the cost target is met. In this regime, we will
not be able to meet the noise variance target A, but we
will come as close as we can given the constraint on total
available hardware.

Figure 1 illustrates this idea. At time 1 in the figure,
certain wordlengths are allocated. At time 2, we increase
some of the wordlengths according to (12). At time 3, we
desire to further increase some wordlengths, but this would
cause the total hardware cost to exceed the bound C. At
this point, we uniformly decrease the common portion for
all wordlengths until the total cost bound is met. If the
data improves so that we are substantially below our cost
boundary, then we uniformly add bits back to the common
portion to improve our noise variance.

A simpler, approximate mechanization of this approach is
to use two thresholds. We try to keep the filter wordlengths
“between” the two thresholds. For example, we may re-
quire that maximum wordlength is between the thresholds

(14)

J J
g,ln+1] g [n+1] g [n+1]
Figure 2. LMS adaptive FIR filter.

(or perhaps some minimum number of b;’s are between the
thresholds). If the maximum wordlength crosses the upper
threshold from below, then we reduce the common portion
of the wordlength for each by. If the data improves so that
the by’s are reduced individually, then eventually the max-
imum wordlength will drop below the lower threshold from
above. At this point, we increase the common portion of
the wordlength for each bx. In each of these cases, we act
to bring the maximum wordlength back to between the two
thresholds.

Now examine the k-varying portion of the wordlength
calculation:

1 a1 1
5 log, (Ck) =3 log, ax 5 log, ct. (15)

We can approximate the calculation of the varying portion
by locating the lead-bit location of oy and ¢, and then
scaling and subtracting these numbers. The cost of these
operations in terms of hardware will generally be small com-
pared to the cost of implementing the total algorithm.

4. CONFIGURABLE COMPUTING
ADAPTIVE FILTERS

We have implemented real-time wordlength adaptation in
the problem of adaptive equalization of an unknown lin-
ear dispersive channel. The least-mean-square (LMS) al-
gorithm is used to update a finite impulse response (FIR)
filter, and the wordlengths of inputs to each of the filter
taps are dynamically varied as the filter taps change.

The LMS algorithm, described in great detail in [7], grad-
ually changes the taps of an FIR filter to minimize the error
between the actual (y[n]) and the desired (d[n]) output sig-
nals. Let z[n] denote the input at time n, and g[n] be the
value of the k-th filter tap at time n. The filter output y[n]
is computed as

y[n] = gilnlaln — K], (16)

k=0
and the filter taps are adjusted according to
ge[n +1] = gr[n] + px[n — k](d[n] —y[n]), (17)

where p is an appropriately chosen stepsize parameter.

We implemented the LMS algorithm with wordlength
adaptation using the structure shown in Figure 2. In the
figure, the input multiplying gz[n] is truncated to by bits
prior to multiplication, and by, is re-calculated according to
(12) or (14) as the filter tap gi[n] is updated. The variance
injection scale factors ay are therefore simply gi[n]/12.

While there are many ways of implementing LMS in hard-
ware, we have chosen to use a simple bit-serial implemen-
tation, which is highly area-efficient. A block diagram of

Inputs

X[n] Shift

Register

e B SR
MSB

x[n-N

GolNl ||)

G I gk[n]
/\/
o
'FilterTaps

Figure 3. Bit-serial implementation of an FIR filter.

a bit-serial multiplier is shown in Figure 3. At each clock
cycle, 1 bit of the input is gated with a corresponding filter
coefficient value, and the result is added to the accumula-
tor. The total number of clock cycles needed to generate
one output value is therefore the sum of the number of bits
allocated to the inputs (3 b;). Hence, by setting all of the
cost coefficients ¢; to be 1 we can either minimize the calcu-
lation time subject to variance constraint or minimize the
variance subject to time cost constraints.

5. EXPERIMENTS

In this section we show the results of implementing
wordlength adaptation on the bit-serial adaptive LMS fil-
ter. Our experiments are based on those presented in Sec-
tion 9.13 of [7]. Specifically, the system is a simple adaptive
equalizer with input

z[n] = h[n] * a[n] + v[n], (18)

where a[n] is a real single-bit signal (a[n] = £1), h[n] is the
impulse response of the channel:

1h 2T (p—2 =1,23
hln] = { 6 [oo (2'7 (n))] 7 gtherx;vi;e (19)

and v[n] is Gaussian white noise with zero-mean and vari-
ance 0.001. gx[n] has 11 non-zero taps, and the desired
signal d[n] is a delayed version of a[n]. The implementa-
tion used a stepsize p of 0.0625. Unless otherwise noted,
all fixed-point implementations used 9-bits as the default
wordlength.

For brevity, we show the results for wordlength adapta-
tion only for the case of minimizing variance subject to cost
constraints. This is directly applicable to a bit-serial im-
plementation, where the cost constraint corresponds to the
amount of time permitted for each output sample. With
¢t = 1 and ay, = gx[n]>/12, we note that the k-varying por-
tion of (14) is log, gx[n], which can be approximated using
a lead-bit detector. We further assume that the filter tap
values do not change significantly from iteration to itera-
tion, since the step size p is relatively small. Under these
assumptions, we let

bi = log, gk[n] + q[n], (20)

where g[n] represents the portion common to all by. Instead
of a full calculation, g[n] is gradually adjusted over time so
that the cost constraint is met. For example, if the total cost
from the previous cycle was less than the constraint, then
g[n] is incremented (g[n] = g[n — 1] + 1). Even though the
approximation no longer guarantees that the cost constraint
is always met, we will show in Figure 5 that it is met on
average.

To illustrate the relative performance of wordlength
adaptation, we first show in Figure 4 the ensemble averaged

b

o

Ensemble averaged MSE

10

50 100 1580 200 250
lteration

Figure 4. Comparison of LMS performance for four

implementations.

mean-squared-error as a function of time for four implemen-
tations of the LMS algorithm: floating-point, by = 9 fixed-
point, b, = 5 fixed-point, and finally, real-time wordlength
adaptation with the time constraint Y by < 55.

From the figure, the floating-point implementation gives
the lowest average MSE, and the 9-bit fixed-point imple-
mentation comes very close to it. Cutting back to 5 bits at
the inputs gives rise to significantly higher MSE. However,
by using wordlength adaptation, we were able to match the
performance of the 9-bit implementation using only an av-
erage of 5 bits at the input.

Figure 5 shows the sum of the bit allocations at each LMS
iteration for different constraint levels of 33, 55, or 77 total
computing cycles per output. While the constraint is not
met at every iteration, the average time per output sam-
ple does meet the constraints. More sophiscated methods
of setting g[n] in (20) can of course reduce the amount of
variance in the total number of allocated bits in each cycle.

To further illustrate that the wordlength adaptation pro-
cess does indeed allocate reasonable wordlengths, Figure 6a
shows by, averaged over time during the last 100 iterations
for varying hardware constraints. In each case, the bit al-
locations were constrained to use at least 2 bits. Figure
6b shows the impulse response to which the adaptive filters
converged. By comparing Figures 6a and 6b, we see that
more bits are allocated to those inputs multiplying taps
with large absolute values, just as we expected.

6. DISCUSSION AND FUTURE DIRECTIONS

In this paper we were concerned with optimizing both
the wordlengths and performance of hardware-based algo-
rithms. By restricting the cost function to the simple but
important linear case, we were able to derive closed-form
expressions for the wordlengths. Additionally, the form of
the expressions admitted an efficient hardware implemen-
tation to allow the real-time calculation of the wordlengths.
We applied this to a simple bit-serial implementation of an
LMS adaptive filter.

Higher speed, parallel implementations of the LMS filter
are also of great interest. We are currently investigating
a fully parallel implementation, where truncating the in-
put data results not in a hardware savings, but rather in
a power savings, due to a reduction in the number of logic
transitions.

The approach outlined here is more generally applicable
than to just linear filtering. We are currently examining op-
timal wordlength allocation for more general cases of non-
linear algorithms and nonlinear cost functions.

Total< 77, Act. avg: 76.5

il |

D

Total bits allocated b,

otal < 55, Act, avg: 54.8

| I
30
Total< 33, Act, avg: 33.8
H i i 1 1
0 50 100 150 200 250 300
lteration

Figure 5. Total bits allocated using approximate
wordlength adaptation procedure in each iteration
for constraints of 33, 55, and 77 total bits.

"

2r (a)
ok

—w— 22cycles| 1
—=— 33cycles| |
—4— 77 cycles|

©

Avg bit allocation b
o

(b) —v— 22cycles]
s —=— 33cycles| |
—&— 77 cycles|

Average g[k]

4 6
Tap number k

Figure 6. (a) Average number of bits allocated to
each input position during the last 100 iterations of
LMS processing. (b) Average tap weights during
the last 100 iterations.

ACKNOWLEDGEMENT

This work was supported by the Defense Advanced Projects Research
Agency (DARPA) and the United States Air Force Research Labora-
tory (AFRL) under Contract No. F33615-97-C-1174. Any opinions,
findings and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of DARPA or AFRL.

REFERENCES

[1] Scott Hauck. The roles of FPGA’s in reprogrammable
systems. Proceedings of the IEEE, 86(4), April 1998.

[2] Xilinx Corporation. The programmable logic data book.
http:/ /www.zilinz.com, 1998.

[3] Paul D. Fiore, Cory Myers, John M. Smith, and Eric
Pauer. Rapid implementation of mathematical and DSP
algorithms in configurable computing devices. In Proc.
Configurable Computing: Technology and Applications,
part of SPIE Intl. Symposium on Voice, Video and Data
Comm., November 1998.

[4] W. H. Mangione-Smith et al. Seeking solutions in con-
figurable computing. Computer, December 1997.

[5] Paul D. Fiore. Low complexity implementation of a
polyphase filter bank. Digital Signal Processing, A Re-
view Journal, 8(2):126-135, April 1998.

[6] Alan V. Oppenheim. Applications of Digital Signal Pro-
cessing. Prentice-Hall, 1978.

[7] Simon Haykin. Adaptive Filter Theory. Prentice-Hall,
1991.

