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Abstract 

Transmitt,er optimization techniques for maximizing 

the throughput of linear IS1 channels impaired by 
additive-Gaussian noise and crosstalk are presented. 
Transmitter ends of both single carrier and multicarrier 
transceiver structures are optimized subject to a fixed 
average input energy constraint. The effect of transmit- 
ter optimization on channel throughput is quantified by 
comparison with scenarios where both the desired user 

and the crosstalker use a flat energy distribution across 
the transmission bandwidth. 

1 Introduction 

Limited bandwidth resources in many spectrally- 
efficient digital communications systems often result 

in having multiple users, with the same transmission 
power spectral density characteristics, share the same 

frequency band and thus interfere with each other. 
Among the scenarios where this interference is per- 
formance limiting are Co-channel Interference (CCI) 
in digital cellular radio systems [l] and crosstalk (both 
near-end and far-end) in the emerging high-speed dig- 
ital subscriber line (DSL) systems [2]. 

Effective signal processing techniques are imple- 
mented at the receiver to mitigate crosstalk such as 
dectsaon-feedback epuallzatzon (DFE) in single-carrier 

modulation (SCM) systems [l] or FFT processzng in 
multicarrier modulation (MCM) systems [2]. Full op- 
timization of a communication system entails optimiz- 
ing both the receiver and transmitter ends where the 
second task requires optimizing the transmission band- 
width and the power spectral density shape of the in- 
put signal. While transmitter optimization for mul- 
ticarrier systems on noisy ISI channels with crosstalk 
has received considerable attention recently [3, 4, 51, 
this has not been the case for single-carrier systems 
where published studies either assume no crosstalk (see 

[3, 61 and the references therein) or an infinite-length 
transmit filter as in [7]. In addition, previous trans- 

mitter optimization studies for multicarrier systems 
are for the Discrete Multitone (DMT) implementation 
where channel spectrum partitioning is effected by us- 
ing the IFFT/FFT modulating vectors and adding a 
cyclic prefix to the input block. The present author is 
not aware of any multicarrier transmitter optimization 
studies in the presence of crosstalk for Vector Coding 
(VC) multicarrier systems [8] where zero stuffing and 
optimum eigenvector-based modulating/demodulating 
vectors are used. 

In this paper, we present a unified framework for 
optimizing the transmitter of fir&e-complexity single 
carrier and multicarrier modulation systems on lin- 
ear IS1 channels impaired by additive-Gaussian noise 
and crosstalk. The performance metrac assumed for 

transmitter optimization is channel throughput (in 
bits/symbol) at a given symbol rate. 

2 Single-Carrier Transmitter 
Optimization 

2.1 Input-Output Model 

We adopt the following discrete-time representation 

of an additive-noise dispersive channel impaired by 
crosstalk 

Y Vr 

Yk = c h&k--m + nk + x&ik-i , (1) 

m=O i=O 

where h, ‘9 [ /Q-I,,, . . . ho,, 1’ and gi ‘g 

[ !-7l-l,i " ' SO,i ] ’ are the mth main channel and the 
ith crosstalk channel (vector) impulse response coeffi- 
cients having memories of v and v~, respectively, and 
oversampled by a factor of 1. We assume a continu- 
ous transmission bandwidth and perfect knowledge of 



the desired and crosstalker channel and the noise char- 

acteristics at the transmitter and receiver ends. The 

input sequence, {2’k}, the crosstalker sequence {Ek}, 

and the noise sequence, {nk}, are assumed to be sta- 

tionary, zero-mean, independent of each other, and 

have non-singular auto-correlation matrices denoted 

by Rx, Ree, and R,,, respectively. 

The input and crosstalker sequences are generated 

by the same FIR transmit filter according to 

yt 
tk = Pnfk-n and ik = c Pnvk-nr (2) 

n=O n=O 

where {pI}rLo are the transmit filter coefficients and 

{6k} and {qk} are white unit-energy sequences. 
Over any block of N output symbols, Equation (1) 

can be expressed as follows 

h, 0 ... 0 
ho h1 ... h, 0 ... 

h,, hl ... h, 

go g1 “’ g, 0 ‘. . 0 
0 

L 

go g1 ‘.. gv cl ‘.. 

+ 

0 . . . 0 go g1 ... gv 

or more compactly : 

Zk+N-1 

zk+N-2 

yk+N--I k = I-I SCMXktN-1 k--u + nktN-1 k (3) 

+ GscM%k+N--1 k--v, . (4) 

Similarly, the vector representations of (2) are 

Xk+N-1 k-u = PEk+N-1 k-v-u, and 

%k+N-1 k-u, = bk+N--I k--v,--v, , 

where P = fi when Y = uI, otherwise, one will be a sub- 

matrix of the other. 

It follows from (2.1) that R,, = PP’ and Rzr = fiP* 

which guarantees that the input and crosstalker auto- 
correlation matrices are Hermitian positive semi-definite 
matrices whose size is rndependent of the transmit filter 
length (ut + 1). Perhaps less obvious is the fact that since 
P and P are fully-windowed Toeplitz matrices, R,, and 
R,r will also be Toeplitz with an (8,~) element equal to 

~~~=~~~~~i:-,g.ndTvhPcf~re;a.RII will be a submatrlx of 
- z 

2.2 Channel Throughput (Noise-Plus- 
Crosstalk Case) 

In the presence of crosstalk, the total noise-plus<rosstalk 
auto<orrelation matrix is given by 

R nn,tot - - Rnn + Gsc~Rr&‘s~~. 

Assuming the crosstalker signal is Gaussian ‘, it can be 
shown that the channel throughput is given by 

1 
log, (IN+” + H&MR~~,tatH~~~&sl 

SCM = 
(N+u) 

. (5) 

Then, the channel throughput optimization problem in the 
presence of crosstalk can be stated as follows 

max I SCM 
{PO.Pl, .Pur } 

subject to 2 ,pt,’ = 1 . (6) 
,=o 

The up-energy transmit filter constraint is equivalent to 

trace( rrl = 1 or tr~cecRd = 1. As a performance base- 
lin~~th”k channel thri$?p:t for the case of a flat transmit 
filter is given by 

f fiat = 
log, (IN+,, + H>c~(Rnn + GscMG&M)-'HscMI 

(N+u) 
(7) 

This is a constrained and nonlinear optimization problem 
that we solved numerically using the constr function of the 
MATLAB Optlmizotion Toolbox [9] which implements the 
Sequentto Quadratic Programmtng (SQP) algorithm. This 
algorithm solves the Kuhn-Tucker equations using an ap- 
proximation of the Hessian of (5), computed using a quas- 
Newton updating procedure to solve a quadratic program- 
ming subproblem and establish a search direction for a tine 
search procedure. 

3 Mult icarrier Transmitter Op- 
t imizat ion 

3.1 Vector Coding Case 

In vector coding, each input block of size N is padded with u 
zeros to eliminate interblock interference, thus isolating suc- 

cessive transmitted blocks [8]. Therefore, the input-utput 
relationship can be expressed in matrix form as follows 

‘It was shown in [7] that this assumption results in a 
lower bound on channel throughput when the crosstalker is not 
GaUSSian. 
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L xk J 
YktN-1 k = HDMTXktN--1 k+nktN-1 k+GDMTfk+N--l:k . 

%ktN-1 

gv ... go 0 f kk+N-2 
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or more compactly 

YktN-1 k-u = HvcXk+N--I k+nk+N-I k--u+Gvcgk+N--l k 

The achievable channel throughput in this case is 

1 vc = 
log, IIN + I-It&L + GvcRzzG;c)-lH~~RzzI 

(N+u) 

(8) ’ 

where the autocorrelation matrix of the input and 

crosstalk sequences are identical and both denoted by R,,. 
For VC-based MCM systems, R,, is only constrained to 
be a Hermitian positive semi-definite matrix, hence, it ad- 

mits the Cholesky factorization R,, = L,L: where L, is a 
lower-triangular matrix. The maximization of fvc is per- 
formed over the v elements of L,, subject to the con- 
straint trace(R,,) = (N + u). Once the optimum R,, 
is determined, its eigen-decomposition R,, = VOV’ can 

be computed. The non-zero elements of the diagonal ma- 
trix 0 determine the subchannels that should be used for 
transmission and the corresponding columns of V are the 
optimum transmit filters for those subchannels [8]. 

3.2 Discrete Multitone Case 

In DMT-based MCM systems, each length-N input block 

1 Zk+N-1 “’ 2k ] t is cyclically extended to the block 

[ Zk+u-1 “. 2k xk+N-1 .” lk It. Therefore, the 

input-output model can be cast in matrix form as follows 

The achievable channel throughput of DMT is 

f DMT = 
log2 IIN + H~MT(%~ + GDMTR==G~MT)-‘HDMTR~~I 

(N+u) 
, 

(9) 
where the insertion of the cylic prefix makes the N x N 

9 matrices HDMT, GDMT, and R,, circulant. Therefore, 
they admit the following eigen-decompositions 

H = QCQ’ ; G = QJ?Q’ ; R,, = QAQ’ , (10) 

where Q is the orthogonal DFT matrix with (k, m) element 

equal to Q(,t,m) = &e-J- 1 5 k,m 5 N. 
In general, R,, is not circulant, however, we consider here 
the case of white noise, i.e., R,, = &IN. Substituting 
(10) in (9) and using the facts that ]I + ABI = II + BAI, 
Q’Q = QQ’ = IN, and that diagonal matrices commute, 
we get 

1 DMT = p$-q log2 (IN + C2A(dI~ + r’A)-‘I 

1 N 

= N+u c k2(1+ 
t=l 

Using the Lagrange multipliers optimization technique, 
it can be shown that the optimum mput energy distribution 
is given by 

6, = max( 
-B, +,/m 

2A, to) 

A, = Y:(Y:+u:) ; B, = a:(ay:+a3 ; C, = &&A~~), 

and X satisfies trace(R,,) = cf”_, 6, = N. ’ 

4 Simulation Results 

1; Fjures 1 and 2, we consider the main channel h(D) = 

P=== 
It,o,l and the crosstalk channel g(0) = 

and examine the variation of channel throughput gain with 

o (for -1 < a 5 l), /3 (for -1 5 /3 5 l), and input 
SNR level. The highest throughput gain is achieved when 

2Due to the extra energy required to transmit the cyclic prefix, 
the input energy constraint for DMT is ~trace(R,,) = 
N + v or equivalently trace(R,,) = N. 



(I = 1 and D = -1 in which case the main channel has 
low-pass characteristics and the crosstalk channel has high- 
pass characteristics (or vice versa). Therefore, by having a 
low-pass characteristic, the optimum transmit filter can si- 
multaneously enhance the desired signal and attenuate the 
crosstalker. This throughput gain becomes even higher as 
input SNR is increased from 10 to 20 dB at a fixed SIR level 

of 10 dB. 
Next, we examined the effect of transmitter optimization 

on the throughput of MCM systems. A representative result 
is depicted in Figure 3. As expected, the throughput gain of 
VC over DMT decreases as the blocklength increases since 
the cyclic prefix overhead becomes negligible and the DMT 
subchannels approach the ideal memoryless characteristics. 
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Figure 1: Channel throughput variation versus main 
and crosstalk channel characteristics with optimized 
FIR transmit filter 

Figure 2: Channel throughput variation versus main 
and crosstalk channel characteristics with optimized 
FIR transmit filter 
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Figure 3: Channel throughput variation of VC, DMT, 
and flat multicarrier transmission schemes with block- 
length 


