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ABSTRACT 

This paper is devoted to prediction-based lossless/near-lossless 
image compression algorithm. Within this framework, there are 
three modules, including prediction model, statistical model and 
entropy coding. This paper focuses on the former two, and puts 
forward two new methods respectively, they are, prediction 
model based on backward adaptive recognition of local texture 
orientation (BAROLTO), and Poisson statistical model. As far 
as we know, BAROLTO is the best predictor in efficiency. 
Poisson model is designed to avoid the context dilution to some 
extent and make use of large neighborhood; therefore, we can 
capture more local correlation. Experiments show that our 
compression system (BP) based on BAROLTO prediction and 
Poisson model outperforms the products of IBM and HP 
significantly. 

1. INTRODUCTION 

The success of JPEG has greatly increased the research interests 
in lossless/near-lossless image compression in recent years. 
Generally, the first step to compression is decorrelation. There 
are many decorrelation schemes such as wavelet, hierarchical 
interpolation, and prediction etc. In the context of lossless/near- 
lossless image compression, experiments show that there is no 
obvious difference between the performance of these methods 
[1][2]; but their computational complexities are very different. 
Actually, seven out of the nine proposals for JPEG-LS adopted 
the prediction method with simplicity in mind [3]. 

Within the framework of prediction-based compression, there are 
three modules; including prediction model, statistical model and 
entropy coding. This paper focuses on the former two. In fact, we 
put forward two new methods for these two modules respectively; 
they are prediction model based on backward adaptive 
recognition of local texture orientation (BAROLTO), and 
Poisson statistics model. Experiments on JPEG test set show that 
these two new methods are very efficient. As far as we know, 
BAROLTO is the best predictor. The compression system (BP) 
based on BAROLTO prediction and Poisson model significantly 
outperforms the Sunset CB9 system of IBM by 4.1%, the LOCO- 
VJPEG-LS system of HP by 5.3%. 

Section 2 presents the BAROLTO method. Experimental results 
are also listed to show the efficiency of BAROLTO prediction. 
Section 3 describes the Poisson statistical model. Section 4 gives 
the experimental results of our compression system (BP) based 
on BAROLTO prediction and Poisson statistical model. 

2. PREDICTION BASED ON BACKWARD 
ADAPTIVE RECOGNITION OF LOCAL 
TEXTURE ORIENTATION (BAROLTO) 

2.1 Problem Statement and Idea of BAROLTO 

Linear DPCM methods adopted by the lossless model of JPEG 
are far from being flexible and powerful enough to provide 
satisfactory prediction. The key to improve the prediction 
accuracy is to take advantage of the orientation of local texture. 
This is also the center of all the predictors in the proposals for 
JPEG-LS, including the MED (Median Edge Detector) of 
LOCO-I [3][4] and the GAP (Gradient Adjusted Predictor) of 
CALIC [3][5] etc. Great improvement on the traditional DPCM 
methods has been made. However, a closer study on the above 
predictors can find a potential drawback that both the recognition 
of edge direction and the generation of prediction value seem to 
be fairly arbitrary or ad hoc. The predictors can not work 
accurately and robustly. 

In our viewpoint, in the normal direction of the texture, the 
variation of the intensity values might be too complicate to 
provide useful deterministic prediction. Moreover, limited by the 
raster scan order, it becomes more impracticable to get 
satisfactory estimation of the profile and the value of the edges. 
In the tangent direction, however, the variation of the intensities 
might be relatively smooth, and the nearest pixels in the tangent 
direction might be a good enough prediction to the current pixel. 
Therefore, the core of BAROLTO is to recognize the orientation 
of the local texture accurately and robustly. 

2.2 Notation 

Consider gray image Z[x,u]. Let P[x,r], e[x,y], ZY[x,y], 

I”[x, y] be the prediction value, the prediction error, the 

quantized prediction error and the reconstruction value 
respectively, the formula of which can be found later. Define the 
neighborhood of [x, y] as a set n , as illustrated in Fig. 1. 

Define the set of prediction directions I = {i 1 i = 0,1,2,3,4} , and 

the mapping M : I H R , which are illustrated in Fig 2. For 
example: 

&(0)=x-l&(O)=y, M,(l)=x+l,My(l)=y-I, 

For each prediction direction i E I , define the image of error 
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Fig. 1 Neighborhood Fig. 2 Prediction directions. 

~‘[~,~l=~~~~,~l-~[~~(i),~~(~)l~ 

and define the sum of error 

S’[x’,y’]= Q[x’,y’].D[x’,y’] 
[x’,vW 

where a[~‘, y’] are the weights assigned in the neighborhood R , 

as illustrated in Fig. 1. 

2.3 Algorithm of BAROLTO 

For every tx, ~1, 

Step 1. Compute the sums of error {S’ [x, y],i E I}, 

Step 2. Sort the sums of error. Suppose 

S’“[x,y]l S’l[x,y]S... 

Step 3. Generate the prediction value 

Pb,Yl= ~w[jl,7tM,(i,),M,(i,)l 
Jd I J=o 

where w[O] = 5” [x, y] , w[l] = S’O [x, y] . 

Step 4. Generate prediction error 

4x, yl = 46 ~1 - fW Yl 

ax> Yl = I k4~~yl+d42q+1~1 if e[x,yl~O 
k4wl-d4%+1~4 if eb,yl<O 

Step 5. Reconstruct value T[x, y] = P[x, y] + Z[x, y] , 

Step 6. Generate the image of error {D’ [x, y],i E I} 

Remark: 1). Si [x, y] is the locally statistical result of the errors 

of prediction value provided merely by the direction i. Si [x, y] 

reflects the fitness of the prediction direction locally. The best 
prediction direction is recognized as the first candidate for the 
orientation of the local texture. The algorithm selects the best two 
directions and produces the actual prediction value by a linear 
combination of the prediction values provided by these two 
directions; the weights of the combination are also related to the 
performance of the direction. 2). The recognition of the 
orientation of local texture is backward adaptive and localized. 
#CI is selected for the accuracy and robustness of the 
recognition. 3) We only describe the encoder actually. The 
decoder is omitted because the algorithm is fairly symmetric. 4) 
The algorithm can be generalized. The set of prediction 
directions can be replaced by a set of predictors. As a matter of 
fact, similar method can be found in [6]. However, such 
generalization losses the important concept of direction. 

2.4 Experimental Result 

A. Recognition of Local Texture Orientation 

Fig 3(a) is the original Lena. Fig 3(b)(c)(d) illustrate the top 3 
candidates for the orientation of local texture among the direction 
set. Gray level 0, 192, 255, 128, 64 correspond to the direction 
value 0, 1, 2, 3,4 respectively. e.g. the brightest points in Fig 3(b) 
indicate that the corresponding direction value is 2, hence, the 
first candidate for the local texture orientation at the position is 2. 
The brightest points in Fig 3(c) indicate that the direction value 
is 2, hence, the second candidate is 2. Fig 4 lists the values of the 
first candidate for the local texture orientation corresponding to 
the marked area in the original Lena. 

(a) Original (b) First candidate 

(c) Second candidate. (d) Third candidate 

Fig. 3 Recognition of local texture orientation. 

This experiment shows that the recognition of the local texture 
orientation is accurate and robust. 

B. Prediction Performance of BAROLTO 

We compare the prediction performance of BAROLTO with that 
of other famous predictors in Tab. 1. The values of zero-order 
entropy of the prediction error on JPEG test set are listed. The 
data in column 2 to 6 are from [1][2]. BJPEG is the best one of 
the seven DPCM predictors of JPEG. MAP, OLP, HINT and 
SCAN are all famous prediction methods, in which MAP is 
actually adopted by LOCO-I. We can see that our method 
consistently outperforms all the other predictors by a large 
margin. 

The predictor of CALIC, GAP, is not included in this table 
because of the absence of data. According to [3], the 
performance of GAP might be approximately the same as that of 
MAP. 
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Fig. 4 The values of the first candidate of the marked area 

3. POISSON STATISTICAL MODEL 

3.1 Problem Statement 

The statistical model in lossless/near-lossless compression can be 
briefly described as follows. For current symbol so, the 

neighborhood of so, defined to be a vector (s, , s2 ,..., sk ) , is an 

ordered set of the past k symbols. k is called the degree of the 
model. The context of so is defined as a mapping 

f(s, ,s,,...,sc) . The goal of the statistical model is to estimate 

the probability under the conditional of the context, 

Aso I f(s,,s,>...9skN 

e.g. in the case f(s,,s, ,..., sk) = (sI,sz ,..., st ) , which means the 

context does nothing on the neighborhood of so, the output of 

the statistical model is the k-order conditional probability. The 

cost of the model is Sk , where S is the size of the alphabet of 
the input symbols. 

The main problem on the statistical model is “Context Dilution” 
[7][8]. Theoretically, the higher the degree, the higher the 
efficiency. But, in practice, with a high degree, the data must be 
spread over too many contexts. Consequently, the model can not 
converge to an acceptable precision. The proposals for JPEG-LS 
suffer a lot from the context dilution. 

In this paper, Poisson statistical model is put forward to avoid the 
context dilution problem to some extent. So we can make use of 
large neighborhood and capture more local correlation. 

3.2 Algorithm of Poisson Model 

Actually, statistical model deals with the quantized prediction 
error F[x, y] . For easy writing, we omit the coordinates, and 

denote e by e 

Step 1. Quantize ] e 1 to be ] z 1 , ] z ]E {O,l,..., z}, K is a small 

integer number, e.g. K = 3 

Step 2. Denote the histogram of] e ( inR as {~[O],c”[l],..,c”[~]}, 

where c”[i] is the count of 1 i; ]= i in n . 2 z[i] =# R , ?[i] 2 0 . 
r=O 

Tab. 1 Zero-order entropy of prediction errors 

Average] 4.50 1 4.42 1 4.48 1 4.61 I 4.32 1 4.19 

Step 3. Quantize the histogram to be {E[O],?[l],..,$]}, such 

that g[i] E {O,l,.. ., $} g is a small integer number, e.g. i = 3 

Step 4. Let {?[O],?[l],..,&i]} be the context of e 

Remark: 1) As far as we know, R is the largest neighborhood in 
the statistical model in the reported papers. 2) The context is not 
from the values of the prediction errors or the gradients, instead, 
the context is from the fuzzy histogram of the quantized error. 3) 
Large as the neighborhood is, it has no structure. We don’t care 
the position of large error; instead, we care the frequency of the 
large error. Many author put emphasis on the relative positions of 
large errors to obtain the two-dimensional structure information 
of the image [9], which brings about the context dilution 
unavoidably. However, we observe that it is fairly impracticable 
to get useful estimation about the two-dimensional structure of 
the image from just a small and incomplete neighborhood. The 
incompleteness is caused by the raster scan; such incomplete 

neighborhood is called 180’ type [8]. 

3.3 Optimization of Poisson Model 

There is two-time quantizations in Poisson model, which 
generate some equivalence classes in the (error, count) plane. 
Thus optimizing the Poisson model is equal to optimizing the 
quantizers. Let us formalize the optimization briefly. 

count 
?I I I I 

count 

Model 
--- 

Error Error 

Fig. 5 Quantization of Poisson model 

For easy writing, in this section we denote the error by x, denote 
the count value by y. The distribution of x is approximated by 
generalized Gaussian density (GDD), 

vdv, 4 P(X) = ~ [ I 2q2 Iv) 
exp(-[q(h 4 I x lb ” 

For detail information about GDD, we refer to [lo]. 

Hence, the probability of error x is 



The count value of x, denoted by yx , is approximated by 

Poisson distribution with parameter n(x) = px .# R , 

p(y, = k) = e-A(x) ?i$ 

The quantizaion of x, denoted by qc , and the quantization of y, 

denoted by qr , can be formalized as 

qI(x)=i, if x’ <x<x’+’ 

q;(x) = i, if y’ I y < y’+’ 

The computation of Poisson model can be writthen 

1). Quantize x: qx” (a) = (41 (x1 h d (x2 L.., d bn 1) 

2).Countx: #q:(R)=(yo,y ,,..., y,) 

3). Quantize count value: 

4ym(fw(~N = (4y”(Yo)+7ym (Y, LS,“(Y”N 

Now, we can write the entropy of Poisson model as 

m&q,“) = -CP(x,~,,...,~,,)log,P(~ I (q,“(Yo)~...4l~(Yn)N 
x,x, 

H(q,” , q,” ) is a functional with respect to quantization methods 

4: and $9 and it can be simplified to be a multi-variables 

function with respect to the thresholds {x’,i = 1,2,...,n} and 

{y’, i = 1,2 ,..., m} . Thus, the optimization model of Poisson 

statistical can be written 

min ff(d,qT) 
(x’.I=l,z, .n) 
(Y’,l=l.z, ,m) 

4. EXPERIMENTAL RESULT 

Based on BAROLTO prediction, Poisson statistical model and 
arithmetic coding [ 111, we realized a lossless/near-lossless 
compression system (BP). Tab. 2 is the experimental results with 
maximum allowable absolute error being 1. The second column 
is the results of the Sunset CB9 system of IBM [12][13]. The 
third is of the executables of LOCO-I/JPEG-LS (V.O.9ON) [14]. 
Our BP system consistently provides the best compression on the 
entire test set and outperforms the product of IBM and HP by 
4.1% and 5.3%, which is a significant improvement. 

Remark: 1). The famous system CALIC is not included in this 
table since we failed to find the data. 2). The BP system is far 
horn being optimized. Actually, the LOCO-YJPEG-LS system 
runs almost 5 times faster than BP currently. 3). We don’t 
employ error feedback mechanism [3] in the BP system since we 
believe that Poisson model has captured as much high-order 
dependencies as possible. 

Tab. 2 Experiments on original JPEG image test set (bits/pixel) 

Images 1 IBM I HP I BP 
Ba1oon.y 1.45 1.65 1.48 
Barb1.y 3.10 3.15 2.88 
Barb2.y 3.17 3.17 3.06 
Board.y ] 2.22 1 2.20 1 2.09 

PI 

PI 

[31 

141 

[51 

WI 

[71 

PI 

[91 

5. REFERENCES 

N. Memon, K. Sayood. “Lossless Image Compression: A 
Comparative Study”, Proc. SPZ.& Vol. 2814, ~~8-20, 1995. 
Debin Zhao, “Research on Lossless Still Image 
Compression”, PhD Dissertation, Harbin Institute of 
Technology, P. R. China. 1997 
N. Memon, V. Sippy, X. Wu. “A Comparison of Prediction 
Schemes for a New Lossless Compression Standard’, 1996 
International Symposium on Circuit & Systems, Vol. II, 
~~309-3 12, 1996. 
W. Weinberger, G. Seroussi, G. Shapiro. “LOCO-I: a low 
complexity, lossless image compression algorithm”, Proc. of 
IEEE Data Compression Conf, ~~140-149, 1996. 
X. Wu, et al. “ L, -Constrained High-Fidelity Image 

Compression via Adaptive Context Modeling”, Proc. of 
IEEE Data Compression Conf, pp91- 100, 1997. 
T. Seemann, P. Tisher. “Generalised Locally Adaptive 
DPCM”, Proc. of IEEE Data Compression Conf, ~~473, 
1997. 
M. Weinberger, J. Rissanen, and R. Arps. “Application of 
Universal Context Modeling to Lossless Compression of 
Gray-Scale Images”, IEEE Trans. Image Processing. Vol. 5, 
No. 4, ~~575-586, 1996. 
x. wu. “Lossless Compression of Continueous-Tone 
Images via Context Selection, Quantization, and Modeling”, 
IEEE Trans. Image Processing, Vol. 6, No. 5, ~~656-664, 
1997. 
Debin Zhao, Xiaohui Xue, Yan Liu. “Lossless/Near- 
Lossless Image Compression Using Context Selection and 
Arithmetic Coding”. The Fifih International Symposium: 
The Actual Problem of the Scientific and Technological 
Progress of the Far Eastern Region, ~~62-67, 1997. 

[lo] K. Bimey, T. Fischer. “On the Modeling of DCT and 
Subband Image Data for Compression”, IEEE Trans. Image 
Processing, Vol. 4, No. 2, 1995: ~~186-193. 

[l l] Xiaohui Xue, Wen Gao. “High Performance Arithmetic 
Coding for Small Alphabets”. Proc. IEEE Data 
Compression ConJ, pp477, 1997. 

[12] G. Langdon. “Sunset: A Hardware-Oriented Algorithm for 
Lossless Compression of Gray Scale Images”, Proc. SPZE, 
Vol. 1444, ~~272-282, 1991. 

[13] G. Langdon and C. Haidinyak. “Experiments with Lossless 
and Virtually Lossless Image Compression Algorithms”, 
Proc. SPZE, Vol. 2418, ~~21-27, 1995. 

[14] http://www.hpl.hp.comilocol. 


