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ABSTRACT 

The use of the generalized coherence estimate as a 
statistic for detection of a common signal in multi- 
ple independent channels of additive gaussian noise has 
been studied in several recent papers. This work has 
relied on simulations to evaluate detector performance 
because the distribution of the generalized coherence 
estimate with signal present is unknown. This paper 
derives an asymptotic expression for the non-null dis- 

tribution of the estimate as the length of the sample 
sequences approaches infinity, develops an asymptotic 
performance analysis based on this distribution, and 

compares the receiver operating characteristics derived 
from this theoretical approach to those obtained using 
simulations with large sample sequence lengths. 

1. INTRODUCTION 

The generalized coherence (GC) estimate has been stud- 
ied as a statistic for detection of a common signal on 
M 2 2 noisy channels [l, 21. The GC estimate has been 
shown to provide a natural geometrical generalization 

of the magnitude-squared coherence (MSC) estimate, a 
widely used statistic for detection of a common signal 
on two noisy channels [3]. Recently it has been ob- 

served that the GC estimate arises as the test statistic 
in the uniformly most powerful invariant matched sub- 
space detector for a class of multiple channel detection 
problems [4, 51. 

The GC-based detector described in [l] is a signifi- 
cance test: it does not assume an explicit signal model, 
but relies on the ability of the GC estimate to discern 

deviations from the Hs hypothesis that all M channels 

contain independent gaussian noise. Explicit knowl- 
edge of the probability distribution of the GC estimate 
under these Hc conditions makes it possible to calculate 
detection thresholds corresponding to given probabili- 
ties of false alarm. 

Previous research has had to rely on Monte Carlo 
simulations to evaluate the performance of GC-based 

multiple-channel detectors because no analytical ex- 

pressions for the distribution of the GC estimate un- 

der signal-present hypotheses have been known. This 

paper sketches a derivation of the asymptotic distri- 

bution of the GC estimate when the channels contain 
a white gaussian signal in independent, additive white 
gaussian noise and the length of the sample sequences 
approaches infinity. This expression is used to develop 
theoretical performance predictions for GC-based de- 
tectors using long sample sequences. Receiver oper- 
ating characteristic (ROC) curves derived from theory 
are compared to empirically determined ROC curves 
for various scenarios. 

2. GENERALIZED COHERENCE 

Suppose that the M-channel detector is to operate in 
a scenario 

Ho : Zk(.) = 7Ek(.) 

HI : Zk(.) = s(.) + %(.) 

where s(.) denotes a common signal with spectral den- 
sity S, (.) and the noise nk, Ic = 1, . . . , M on each chan- 

nel is independent and complex gaussian with spectral 
density S,, (.). For a white signal in additive white 
noise the vectors z obtained by sampling the processes 

zk(.) can be modeled as independent realizations of a 
complex random M-vector Z = [Zr . . . 2~1~. 

Suppose that N independent observations z, of the 
random vector Z are available. The GC estimate, in- 
troduced in [l], is defined as 

det A 
,i2cA) G ’ - n2, Akk 

where 

(1) 

(2) 

zH denotes the camp lex conjugate transpose of z, and 

Akk is the Icth diagonal element of the matrix A. 
Prior work has focused on the GC estimate with- 

out significant attention to the underlying entity being 
9 



estimated. In analogy with the well known magnitude- 

squared coherence coefficient, the generalized coherence 
coeficient of a complex random vector Z with covari- 

ante matrix C may be defined as 

y211- 
det C 

n,M=, xkk 

It can be shown that the GC estimate (1) provides a 
consistent estimate of y2. 

The GC coefficient y2 is a measure of the degree of 

correlation of the components of Z and has the prop- 

erties 0 5 y2 5 1 for all Z, y2 = 0 if and only if all 
components of Z are uncorrelated, and y2 = 1 if any 

two components are perfectly correlated. The GC coef- 
ficient can be expressed in terms of the signal-to-noise 
ratios (SNRs) on the M channels as follows. The SNR 

on the lath channel at frequency w is defined as 

S&) 
SNRkbJ) = s,,(w) 

For a white signal in white noise, the spectral densities 

(and therefore the SNRs) are independent of frequency. 
Substituting the expression for the SNR into (3), it is 
possible to express the GC coefficient in terms of the 
SNRs on the channels as 

-& ( SNR~ , . . . , smM) = 
c:2 CC6 S) 

n,M=, (1 + SNR,) (4) 

where S denotes the set S = { SNRl , SNR2, . . . , SNRM} 
and C(i, S) denotes the sum of all the i-tuples from S. 

For example C(2, S) = SNRiSNRs + SNRiSNRs + . . . + 
SNR~-1SNR~. 

For equal SNRs on all channels, the GC coefficient 
for M channels can be written in terms of the SNRs as 

r~(SNR) = CEO2 ( y ) SNR”--’ 
(1 fSNR)M ’ 

In the following section, these relations will be used 
to express the asymptotic distribution in terms of the 

SNRs on the channels. 

3. ASYMPTOTIC DISTRIBUTION 

The goal of this section is to establish that, for a com- 
plex zero-mean white gaussian signal in complex zero- 
mean white gaussian noise, the conditional distribution 
of q2 given r2 > 0 is asymptotically normal with mean 
E[T21y2] = -y2 and variance 

var(~21~2, R) = 
(1 - r2)2(tr(R2) - M) 

N (5) 

where R denotes the matrix of correlation coefficients 

between the channels. Under these conditions, Z is a 

zero-mean complex gaussian random M-vector [6] with 

covariance matrix C = E[ZZH]. Defining 

V = f(A) A l- T2(A) = det A 
nk Akk 

it clearly suffices to establish that V is asymptotically 
normal with the appropriate mean and variance. To 
achieve this, V is shown in the following paragraphs 

to be an afhne function of a complex random vector Cp 

that is asymptotically normal. 

Denote T = fi(A - C). Calculating the char- 
acteristic function of T and applying the central limit 
theorem for complex random variables [7] shows that 

the asymptotic distribution of T is complex gaussian. 
Its mean is E[T] = &(E[A] - C) = fl(C - C) = 0. 
To calculate the covariances of the elements of T, first 
observe that the covariances of the elements of A are 
given as 

cov(Aj , &) = -WA,, - E[Ai,l)(& - -Wkrl)*l 

which is obtained by expanding the product and sub- 
stituting the fourth moment of a zero-mean complex 
gaussian random vector, given in [7] as 

Now, since 

cov(T,j , Tki) = NE[(A, - &&‘h - xkl)*] 

= NE[AijA;l] - NC,,C;,, 

substituting (6) yields 

Cov(Tij ) Tkl) = c,k Cu. (7) 

Define 9 to be the vector obtained by arranging the el- 
ements of T in row-major order. Then @ is asymptoti- 
cally zero-mean gaussian, as desired, and its covariance 

matrix !I! is determined by equation (7). 
It remains to show that, in the limit N + co, V 

is an afhne function of 9. The Taylor expansion of 

V = f(A) at A = C is 

f(A) = f(c) + f’WI,=, (A - C) + ... 

In this expression, the notation (A - C) is understood 
to represent a column vector formed from the matrix 
elements in row-major order and f’(A) is a row vector 
of partial derivatives of f with respect to the elements 

of A, again taken in row-major order. Assuming the 



higher order terms are negligible for sufficiently large N 
yields the desired expression for V as an affine function 
of 9: 

V = f(A) = f(X) + I?0 (8) 

where I = f’(A)jAcc. 
The asymptotic mean of 72 = 1 - V can be calcu- 

lated by taking the mean on both sides of (8) as 

E(T21y2) = E[l - V] 

= l- 
det C 

ng”=, &k = 72’ 

Standard results on gaussian variates suggest that 
the asymptotic variance of V can be obtained using 

equation (8) and the covariance matrix P of @ calcu- 
lated above. Following [S], the computation is accom- 

plished using the total differential df(A) at A = C: 

= E 

= E [i M ,+J af(A) 
cc 3Aij A=x 

(Aj - Gj) 
i=l I=1 

Substituting y2 = 1 - f(E) and T2 = 1 - V allows 
this equation to be simplified into the expression for the 
asymptotic variance of the GC estimate given in (5). 
For equal SNR on all channels, the variance simplifies 
to 

var(‘y2jr2) = $(l - 72)2M(M - l)p2 

where p denotes the correlation coefficient between any 

two channels. 

The preceding results establish that the conditional 
distribution of the GC estimate given true GC value 
y2 > 0 is asymptotically gaussian with mean r2 and 
variance given in (5). 

4. A COMMENT ON BIAS 

While the GC estimate is asymptotically unbiased, sim- 

ulations have shown that a better approximation of 
the distribution for finite values of N is achieved if the 

asymptotic distribution is corrected by subtraction of 

the estimate bias. Although a closed-form expression 
for the bias of the GC estimate given a non-zero value 
of y2 is not known, many problems of practical interest 

involve SNRs sufficiently small that it is reasonable to 

approximate the bias by assuming y2 = 0. This can be 

calculated as 

bias(72]72 = 0) = E[j2 - y2] 

= 1- l-IkM_T’W-1 
NM-1 ’ (9) 

5. DETECTION PERFORMANCE 

As with the other coherence estimates, the GC estimate 
can be used as a nonparametric detection statistic be- 
cause the distribution is known under the HO hypothe- 
ses. This allows the calculation of detection thresholds 

for a constant false alarm rate (CFAR). 
ROC curves for a multiple-channel detector based 

on the GC estimate can be obtained by using the re- 

lationships between the SNR, the GC coefficient, the 

HO distribution of the GC estimate, and the asymp- 
totic distribution of the GC estimate as derived in the 
previous section. 

Figure 1 shows ROC curves derived from the asymp- 
totic distribution compared to the result of Monte Carlo 
simulations. In the figure, the asymptotic distribution 
was used with the bias correction factor given in (9). 
It can be observed that even for small vector lengths 
the two curves agree well as long as the SNR is not too 

small. 

6. CONCLUSIONS 

This paper has derived the asymptotic non-null distri- 
bution of the GC estimate and shown it to depend on 
the true value of the GC coefficient and the structure 
of the covariance matrix C. Through equation (4), the 
asymptotic distribution may be expressed as a function 

of the SNRs on the channels. 

The distribution has been applied to obtain ROC 

curves for a detector based on the GC estimate. The 

curves obtained agree with results from simulations. 
The results presented here shed light on one of the 

major open questions surrounding generalized coher- 
ence that was posed in [l]. The authors note that many 
important practical and theoretical questions related to 
generalized coherence and its estimate remain open. 
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