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ABSTRACT

A blind algorithm with implicit signal selectivity capability
is proposed. The algorithm is an evolution of the original
multiuser constant modulus algorithm of [1]. The new
algorithm features a least-squares type updating rule for
fast convergence rate and an adaptive control of the weight
of the decorrelation term which improves the steady-state
error variance. The expected improvements of the
proposed algorithm are verified through simulations with
smart antennas in a spatial-division multiple access system.

1. INTRODUCTION

The problem of multiuser signal separation has received
attention due to its relevance for spatial and code division
multiple access techniques (S/CDMA). In this context, it
has been proposed recently in [1] a constant modulus
algorithm with multiuser signal separation capability (MU-
CMA). This capability was achieved by introducing in the
optimization criterion a term which penalizes cross-
correlations between multiuser output signals. Proposed
MU-CMA has a LMS-like updating rule and therefore
features a slow convergence rate which may preclude its
use in fast time-varying environments. Furthermore, we
point out in this paper that the extra decorrelation term
increases the steady-state error variance, which degrades
the corresponding bit error rate performance. Based on the
above observations, a new algorithm is proposed which
differs from the MU-CMA in the following aspects:

e a least-squares type updating rule is employed in order
to increase the convergence rate and,

e an adaptive control of the decorrelation term weight is
used in order to reduce steady-state error variance after
multiuser signals are sufficiently separated.

The improvements obtained with the proposed algorithm
are demonstrated through simulations with smart antennas
in a SDMA application.

The rest of this paper is organized as follows. In section 2
we explain the application of interest in this paper. Section
3 reviews the original MU-CMA algorithm and analyzes
its performance through simple simulations. Section 4
presents the proposed algorithm. Section 5 presents

simulation results that validate the superior performance of
the proposed algorithm. Finally, section 6 summarizes the
present paper.

2. APPLICATION OF INTEREST

The application of interest is an AWGN symbol-
synchronous SDMA system with possible power
imbalances among users. An M-element uniform linear
antenna array is placed in the receiver. A digital
beamformer is provided for each active user. The output
signal of the i-th user's beamformer is given by:

yilnl=w/"x (D)

where: w=[w; w; ... wiy] * is i-th beamformer weight
vector, x=[ x; ... Xy 17 is beamfomer input vector and we
have omitted the time index [#] in the right hand side of
eq.(1) for convenience. Performance among different
algorithms will be accessed through the constant modulus
error(CME): CME(n)=(ly(n)I-1).

3. CONVENTIONAL MULTIUSER CMA

It is well known that the original CMA [2,3] does not have
the signal selectivity capability. Therefore, when operating
in multiuser signal environments, such as S/CDMA-based
systems, additional procedures must be implemented in
order to avoid user ambiguity. One possibility which is
attractive because of its simplicity is the MU-CMA
proposed in [1]. In this case a term which penalizes cross-
correlations among multiuser output signals is added to the
conventional constant modulus cost function. The cost
function that must be minimized corresponding to the i-th
user is given by:
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where: K is the number of users, y[n] is i-th user's
beamformer output, ¥ is the decorrelation term weight and
ry = E{ y,[n]yj*[n]} is the cross-correlation between 1-th and
j-th users. As we will point out in this section, the
decorrelation weight y will be important in meeting a
compromise between the steady-state error variance (which



increases with increasing y) and the probability of user loss
(which decreases with increasing y). A user is lost when it
is not included in the set of recovered users which means
that another user has been recovered more than one time. A
LMS-like algorithm can be obtained by the conventional
stochastic gradient procedure. The gradient of the cost
function ¢; with respect to w; is given by:
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where we have omitted some multiplicative constants that
arise from the derivation. In order to implement this
algorithm, the quantities r; and E {y,[n]xf*[n]} must be
estimated through temporal averages. This is implemented
using a single pole filter as follows:

R, (n+1)=AR,,(n) + (I-A)y[nly"[n] 4
P(n+1=AP(n) + (I-)x"[nly"n] (5)

where yT[n]=[y In] ... yx[n]l, superscripts T and ¥ denotes
ordinary and Hermitian tranpositions, and A<1 is a
smoothing factor. The estimates of the ensemble averages
in (3) can be taken using eqs. (4) and (5). Thus, the MU-
CMA is given by:
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where f,,(n) is the (1,i) element of R,,(n) and p(n) is the 1-

th column of matrix P(n). Two major disadvantages of the
algorithm in (6) are its slow convergence rate and an
increase in the steady-state error variance as a result of the
additional decorrelation term. The latter occurs because the
cross-correlations do not actually vanish due to
imperfections on the estimation procedure. As a possible
illustration of these disadvantages consider the following
simulation. Table I shows the SDMA system setup. In the
present case only the perfect power control scenario is
considered. The additive noise power was set to zero. Fig.
1 shows the mean CME of the MU-CMA for 100
independent transmissions of 5000 QPSK symbols. Each
curve is for a particular value of the decorrelation weight
as indicated in the figure. Also indicated in the figure it is
the percentage of lost users for each curve. Clearly, the
steady-state error variance increases with increasing y
while the percentage of lost users decreases accordingly,
and vice-versa. The penalty in steady-state error variance
due to a successful decorrelation (y=10'3) can be
significant as shown in fig.1. In practice, there will be a

minimum value of y for which no user is lost. However,
this choice of y will depend on the number of active users
in the system. Furthermore, as seen in fig. 1, the algorithm
takes up to 2000-3000 iterations to reach the minimum
CME floor. These disadvantages led us to propose a new
algorithm for fast and efficient blind multiuser signal
separation.

Table I: SDMA System Configuration
{Uniform Linear Array of M=8 antennas)

User # DOA (degrees) Power Control Scenario

Relative Power (dB)

Perfect Near-Far
1 1 0 -6
2 -52 0 -3
3 29 0 +3
4 76 0 +6

4. LEAST-SQUARES WITH ADAPTIVE
DECORRELATION MULTIUSER CMA

As discussed in last section, the slow convergence rate and
the uncertainty about the choice of the decorrelating weight
in the original MU-CMA, may preclude its use in practice.
As a solution for the slow convergence rate, let us now
propose a different constant modulus criterion for
multiuser signal separation. Suppose that at the N-th time
instant there are (N+1) data vectors x(0) ... x(N) as well as
(N+1) array output signals per user y{0) ... y{V).
Moreover, assume the availability of the cross-correlations
statistics r; , 1</,j<K, F#j. Then, for the i-th user, we
minimize a cost function given by:
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Our aim is to choose the array weight vector w; that
minimizes @(N). The gradient of ¢(N) with respect to w; is
given by:
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where, again, we have omitted some multiplicative
constants. By setting eq.(8) to zero we have:
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We can rewrite eq.(9) as:
RN)w{(N)=d(N) (10)

where:
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Finally:
wi(N) = R, (N)d(N) (11)

Note that this optimization procedure resembles the ones
used to obtain the conventional recursive least-squares
algorithm [4] and recursive CMA [5]. For real time
implementation the required quantities in eq.(11) can be
estimated using, again, a single pole filter. Hence, the
algorithm can be summarized as follows:

wi(n) = R’ (n)dy(n) (12.a)

R(n+I1)=AR(n)+(1 -l)lyi(n)\zx*(n)xT(n) (12.b)

K
di(n+1)=Ad(n)+(1-V)y,(m)x (n) =7 > 7 (n) py(n) (12.c)

I=1

I#i

where A<1 is a smoothing factor, IA,,(n) and p,(n) are

temporal estimates of the corresponding ensemble
averages taken respectively from R,,(n) and P(n) in egs.
(4-5), as explained before. The algorithm in eq.(12) will
improve the convergence rate of MU-CMA but not its
steady-state error variance. A further step into improving
the performance of original MU-CMA is to control
somehow the decorrelation weight . In fact, the necessity
of the decorrelation term is less prominent when the weight
vectors of the several users have provided the desired
separation. Hence, the decorrelation weight could be made
a function of the level of cross-correlation among users.

For this sake we need to define a measure of the level of

cross-correlation per user:
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This measure is an average over the number K of users in
the system and therefore independent of it. Now a simple
transformation on eq.(13) will enable us to control the
decorrelation weight in a per-user basis. The value of y on
eq. (12.c) must be substituted by:

Y (n) = tanh[F,- (n)] (14)

where tanh(e) is the hyperbolic tangent function. This
function is an ad-hoc though suitable choice for the control
of the decorrelation weight. The complete algorithm
comprised of eqs.(12-14) will be called least-squares with
adaptive decorrelation - multiuser CMA (LSAD-CMA).

5. SIMULATION RESULTS

In this section we present some comparative simulations
with the proposed algorithm and the existing MU-CMA.
The system configuration is given again by the parameters
in Table 1. Fig. 2 shows the CME performance averaged
over all users and 200 independent transmissions of 400
QPSK data symbols. Signal-to-noise ratio was set to 20
dB. A total of 12 dB relative power imbalance is
considered among users in the near-far scenario, as shown
in table 1. The CME performance of the continuously
trained recursive least squares (RLS) [4] algorithm is
included as a bound on performance. The smoothing factor
for all temporal averages was set to A=0.96. For every
transmission, a verification of lost users was performed
based on the measured bit error rate. Performance of
LSAD-CMA reaches the error floor in as few as 400
symbols with no lost user throughout all independent
transmissions in both power control scenarios. The
performance of the original MU-CMA is poor as expected.
Fig. 3 shows the temporal behavior of the decorrelation
weight averaged over all users and repetitions for the near-
far scenario. Fig. 4 shows an example of the set of antenna
patterns provided by LSAD-CMA for all users after the
last weight update and for the near-far scenario. Note the
implicit power control performed by the antenna array:
gains directed towards each user are inversely proportional
to its received power level. The patterns provided by MU-
CMA were meaningless after 400 hundred iterations.

6. CONCLUSIONS

We have verified some drawbacks of the original multiuser
constant modulus algorithm of [1] and proposed an



alternative technique which improves the convergence rate
and the steady-state error variance. A least-squares version
of the multiuser CMA was derived to enhance the
convergence rate and an adaptive control of the
decorrelation weight was introduced to improve the steady-
state error variance. Simulation results confirm the
expected improvements. The proposed technique, which
has been named least-squares with adaptive decorrelation -
multiuser CMA, is then an interesting approach for the task
of blind multiuser signal separation.
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Fig. 4 - Antenna patterns for LSAD-CMA and near-far
scenario after last weight update.



