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ABSTRACT

The peak of the polynomial Wigner-Ville distribution is
known to be a consistent estimator of the instantaneous fre-
quency for polynomial FM signals. In this paper, we present
an algorithm for the design of an optimal time-varying win-
dow length for this estimator when noisy non-linear, not
necessarily polynomial, FM signals are considered. The
results obtained show that the estimator is accurate and
outperforms any fixed window time-frequency distribution
based estimator.

1. INTRODUCTION

For non-stationary signals, i.e., signals whose spectral con-

tents vary with time, the frequency at a particular time is

well described by the concept of instantaneous frequency

(IF) [3]. In many real-life applications such as radar, sonar,

bio-medical engineering, and automotive signals, the IF char-
acterises important physical parameters of the signals [9];

therefore, it is desirable to have effective methods for IF

estimation.

Two major approaches exist in the literature for IF esti-
mation. One approach assumes a certain form of the signal
and uses a mathematical model to estimate it. This is re-
ferred to as a parametric approach. Some problems limit
its application in that it is difficult to find the “correct”
mathematical model of the signal. Furthermore, signal pa-
rameters estimation becomes cumbersome as the order of
non-linearity of the signal increases. Alternatively, one may
use a non-parametric approach for IF estimation. That is,
no mathematical model of the signal is assumed. A well
known class of non-parametric methods is based on time-
frequency analysis.

Time-frequency analysis was introduced as a tool to
characterise the time-varying spectral contents of non sta-
tionary signals. It is capable of displaying the temporal
localisation of the signal’s spectral components, i.e., it is
very powerful in IF localisation and estimation.

The Wigner-Ville distribution (WVD), a member of
a family of bilinear time-frequency distributions [5], was
shown to be efficient in the estimation of a linearly fre-
quency modulated (FM) signal [8]. However, this prop-
erty is no longer valid for non-linear FM signals. For this
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type of signals various higher-order time-frequency distribu-
tions have been introduced. One of them is the polynomial
Wigner-Ville distribution [4].

The polynomial Wigner-Ville distribution (PWVD) gives
maximum energy concentration along the IF law for polyno-
mial FM signals. For these signals, it was shown that the IF
estimator using the peak of the PWVD is unbiased [2]. For
non-polynomial FM signals, this estimator is biased. The
bias is caused by three effects: the implementation error,
the error due to noise, and the error due to the mismatch
of the signal with the distribution order.

In this paper, and taking into consideration the above
mentioned effects, we derive an expression for the bias as
well as the asymptotic variance of the IF estimator for a
non-linear, not necessarily polynomial, FM signal embed-
ded in white Gaussian noise. It is shown that these expres-
sions are highly signal dependent and tend to vary inversely
in function of the window length of the time-frequency dis-
tribution. Based on this observation, we also derive an ex-
pression for the optimal window length that minimises the
mean square error for the IF estimator and propose an algo-
rithm to design the “best” PWVD in the sense of resolving
the bias-variance trade-off. This work is an extension of the
works in [6, 7] where the windowing in the WVD and the
spectrogram were considered.

Simulation results for different highly non-linear FM
signals show that the proposed algorithm can estimate the
signal IF accurately.

The paper is organised as follows. In Section 2, we
derive the expression for the optimal window. In Section 3,
we present the algorithm for the choice of the best window
for the PWVD. Some examples are presented in Section 4;
whereas, Section 5 concludes the paper.

2. OPTIMAL WINDOW LENGTH DERIVATION

In this section we give the expressions of the bias and the
variance of the IF estimator of a non-linear FM signal.

Counsider the problem of IF estimation from the discrete-
time observations

y(nT) = z2(nT) + e(nT)

where n is an integer and T is a sampling period. z(nT') is
a discrete-time version of the signal z(t) = A - exp(jé(t)),



whereas, e(nT) is discrete-time complex-valued white Gaus-
sian noise with i.i.d real and imaginary parts and whose
variance is equal to o2.

The discrete-time domain definition of the windowed
PWVD is given by
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(1)
where ¢ is an even integer which indicates the order of
non-linearity of the PWVD, and the coefficients ¢; (i =
1,2,...,q/2) are calculated so that the PWVD is optimal
for representing polynomial FM signals in the sense that it
yields delta functions around the signal’s IF. In (1), wy (nT)

T/h - w(nT/h) where w(t) is a real-valued symmetric win-
dow with w(t) =0 for |t| > 1/2, h > 0.

Note that the WVD, which is optimal for linear FM
signals only, is a member of the class of the PWVDs with
parameters ¢ = 2 and ¢; = 0.5.

Replacing in (1) the signal z(t) by its expression and
using Taylor’s expansion of the phase, ¢(t), around ¢, we
obtain
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where ¢'(t) is the signal’s IF and A¢(¢,nT) is given by
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Note that for a given polynomial phase signal of or-
der p, the PWVD is designed such that a/ 21 ¢ = 0 for
odd values of m, (3 < m < p). Therefore for this type
of signals, and using the appropriate PWVD, we see that
A¢(t,nT) is always zero through either fol c* 1 =0 (for
3<25+1<p)or V() =0 (for 25 +1 > p). That
is, the PWVD yields delta functions around the signal’s IF.
This suggests the use of the peak of the PWVD as an IF
estimator. However, if the signal is not a polynomial FM
signal, or if there is a mismatch between the polynomial
FM signal and the PWVD order that we use, then an error
is always present in the IF estimate. In addition to this,
and in the case of a noisy signal, there is also a statistical
error. In what follows, we will compute the expressions of
the bias and the variance of such an error.

The IF estimate of the signal is given by the frequency
where the maximum of the PWVD occurs, i.e.,

& = arg[max; Wy@(t, w)]

with I = {w: 0 < |w| < n/T}. That is, the IF estimate is
given by solving for w

AW (t,w)

Oow =0

The linearisation of the above expression with respect to
the effects mentioned above gives
FPWLO(t,w)
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where |o means that the expressions are computed at the
point where w = ¢'(¢), A¢(t,nT) =0, and (nT) = 0, and
Aw is the error in the estimate.

After evaluation of the above expressions, we find the
bias and the variance to be
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where M is the number of coefficients in the kernel of the
PWYVD given in (1) and k; is the multiplicity of each of
these coefficients.

We can also note here, that for a given polynomial phase
signal of order p, and using the appropriate PWVD, the
bias in (3) is always zero through either qu 2o+l =
(for 3 < 2s5+1< p) or ¢tV () =0 (for 25+ 1 > p).

If we choose the window to be rectangular, simple calcu-
lation shows that the mean square error of the IF estimate
is found to be
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In the above expression, we approximated the bias in (3)
by its first term (i.e. s = 1) which is non-zero only for
the WVD. However, for a higher-order PWVD this term is
zero (as well as all the terms up to the appropriate order of
the PWVD used) and we should then approximate the bias
by the first non-zero term in the sum (as explained in the
previous paragraph). For example, the first non-zero term
in the PWVD of order six [2] corresponds to s = 2 and for
the PWVD of order eight ([1]) it corresponds to s = 3 and so
on. Furthermore, this correction in the bias approximation
would change only the expression of the mean square error
in (5) (and the expression of the optimal length that follows)
and will not affect the rest of the paper.

From equation (5), the optimal window length, for min-
imum m.s.e, for IF estimation is
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As can be seen from above, the window length should be
larger for signals with high phase variations. We must also
note that if the IF of the signal is unknown, which is the
most general case, then the expression for the optimal win-
dow length above is of no practical importance. In that
case, and in order to avoid this difficulty, we propose in the
next section an algorithm that can determine the adaptive
optimal window length without having to know the IF and
the signal to noise ratio.

3. ALGORITHM FOR THE ADAPTIVE WINDOW
LENGTH

In this section, we propose a signal dependent time-varying
window length that uses only the asymptotic variance ex-
pression and does not need any information about the sig-
nal’s IF.

Due to space limitation, we will briefly state the algo-
rithm here. However, the basic idea and its details can be
found in [6, 7).

Asymptotically, the IF estimate & is a random variable
distributed around the true IF ¢'(¢) with a bias, Bias(t,h),
and a standard deviation, o. Thus, we may write

|¢'(t) — & + Bias(t, h)| < ko,

where the inequality holds with a probability P(x) depend-
ing on the parameter k.
Cousider a set of discrete window length values, h € H,

H=1{hs| hs =2he_q,8=1,2,...,J}

where ho being a multiple of 2. Let us define the confidence
intervals of the IF estimate as D, = [L,, Us] with

Ls = @n(t) = (k+ Arx)olhs) (6)
Us = &n(t)+ (r+ Ar)o(hs) (7)

where wp, () is an estimate of the IF for the window length
h = hs and o(hs) its standard deviation. Let the window
length h 4+ correspond to the largest s (s =1,2,...,J —1)
when two successive confidence intervals still intersect, i.e.,
when D; N Ds;y1 # @ is still satisfied. Therefore, there
exist values of k and Ak such that D; N Ds41 # @ and
Dyy1NDyy2 =B for s = s* when h,+ = hgpi. That is, the
optimal window length is defined as the window for which
two successive intervals no longer intersect.

The proof of the above proposition and the calculation
of the values of « and A« is well detailed in [6, 10].

Note that the search for the optimal window length over
the finite set H is a simple optimisation problem. However,
the discretisation of the window length h inevitably leads
to a suboptimal window length value. Fortunately, this loss
of accuracy is not significant in many cases as the mean
square error has a stationary point for the optimal window
length and varies very slowly for window lengths close to it.

The algorithm can now be stated as follows:

4. EXAMPLES AND RESULTS

For space reasons, only two examples are considered in this
section. For the first one, the IF is defined as w(t) =

For every time instant ¢,

1. Compute a slice of the PWVD for every value of h; €
H. Thus, we obtain
{Wéz)(t,w)} for every windowh, € H
The IF estimates (corresponding to every window length)

are found as the maximum of each of these slices, i.e.,

n, (t) = arglmax W;? (¢, w)]

2. The confidence intervals are computed for each
window hs using (6-7) with the standard deviation given
by (4) and the amplitude as well as the noise variance
estimated from the signal data as in [6].

3. The optimal window length is obtained as the first
window in the set H when the inequality

|k, (8) = @hyys ()] < (5 + AR)[o(Rs) + o (hs41)]

is not valid anymore and the adaptive IF estimate is
the IF that corresponds to this particular value of the
window length.

4. Repeat the above steps for every time instant ¢.

40 asinh(100 t) 4+ 256 = and for the second one it is given
by w(t) = 256 7 + 128 & sign(sin(27t)) - | sin(2nt)|V/%.

For both examples, the peak of the sixth order PWVD,
defined by (1) with ¢ = 6 and

q/2
H 2(t + cinT)2*(t — cinT) = 2z(t + 0.62nT) 2" (t — 0.62nT)
i=1
2(t +0.750T) 2" (t — 0.75nT)
2(t — 0.87nT)z" (t + 0.87nT),

is chosen as an IF estimator. The signal to noise ratio is
chosen equal to 10 dB and the window set considered is
H={2,4,8,...,256}.

The algorithm estimates the amplitude as well as the
noise variance from the noisy signal. For this reason, an
interpolation is necessary to obtain good estimates of these
quantities.

In Fig.1, we plot the IF estimates for the first signal
using respectively a small, large, and the adaptive window
length which was found using the above algorithm. For
the small window length, the variance is large in agreement
with (4). However, for large variations in the phase, the
bias is large in agreement with (3). Note the superiority of
the adaptive window length in reducing the variance and
the bias. The dashed lines represent the true IF.

In Fig.2, we plot the results for the second signal where
the same conclusions can be inferred.
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Figure 1: The IF estimates of the first signal for a
small, large, and the adaptive window length respec-
tively.
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Figure 2: The IF estimates of the second signal for a
small, large, and the adaptive window length respec-
tively.

5. CONCLUSION

In this paper, we proposed a nonparametric method for the
IF estimation of a non-linear FM signal. This method is
based on the design of an adaptive optimal window length
that minimises the mean square error of the estimator when
the peak of the PWVD is used. Examples, of highly non-
linear FM signals, show that the estimator is very accurate
and outperforms any other fixed window time-frequency
distribution.
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