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ABSTRACT 
The dot diffusion method for digital halftoning has the ad- 
vantage of parallelism unlike the error diffusion method. 
The method was recently improved by optimization of the 
so-called class matrix so that the resulting halftones are 
comparable to the error diffused halftones. In this paper, 
we will give a mathematical description of the dot diffu- 
sion method. This description is then applied in inverse 
halftoning. 

1. INTRODUCTION 

Digital halftoning is the rendition of continuous tone im- 
ages on bilevel displays. There are many good methods for 
this, e.g., ordered dither and error diffusion [8], neural-net 
methods [l], dot-diffusion [3], and direct-binary search [6]. 
The dot-diffusion method proposed by Knuth [3] offers an 
attractive compromise between error diiusion (which is an 
entirely serial method with good image quality) and ordered 
dither (which offers parallelism but suffers from periodicity 
patterns). In [4] and [5] it was shown that images resulting 
from dot diffusion method can be significantly improved by 
optimizing the so-called class matrix to produce blue noise. 
The method is comparable to error diffusion in image qual- 
ity but offers significant parallelism for implementation. 

In this paper we first review the dot diffusion method in 
Sec. 2. We then present a mathematical description of the 
dot diffusion method (Sec. 3) which has hitherto not been 
analyzed formally. We present an error propagation model 
which also allows us to define the so-called inverse halftone 
set precisely. This set is very useful in developing inverse 
halftoning algorithms for dot diffusion. Its usefulness in the 
development of the well-known POCS algorithm for inverse 
halftoning is justified and demonstrated in Sec. 4. 

2. REVIEW OF DOT DIFFUSION 

The dot diffusion method for halftoning has only one design 
parameter, called the class matrix C. It determines the 
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order in which the pixels are halftoned. Thus, the pixel po- 
sitions (nc, ni) of an image are divided into L = I.7 classes 
according to (nc mod I, ni mod J) where I and ,7 are 
constant integers. Table 1 shows an example of the class 
matrix for I = J = 8. This is the class matrix optimized to 
produce blue noise in the halftone image [4]. Let z(nc,ni) 
be the contone image with pixel values in the normalized 
range [0, 11. Starting from class k = 1, we process the pixels 
for increasing values of k. For a fixed k, we take all pixel lo- 
cations (no, ni) belonging to class k and define the halftone 
pixels to be 

h(no,m) = 
{ 

1 if z(nc,ni) Z 0.5 
0 if z(nc,ni) < 0.5 

We also define the error q(no,nl) = z(no,nl) - h(no,n~). 
We then look at the eight neighbors of (no, ni) and replace 
the contone pixel with an adjusted version for those neigh- 
bors which have a higher class number (i.e., those neighbors 
that have not been halftoned yet). To be specific, neighbors 
with higher class numbers are replaced with 

r(i,j) + 2q(no,nl)/w (for orthogonal neighbors) (l(u)) 

z(i, j) + q(no, ni)/ul (for diagonal neighbors) (l(b)) 

where w is such that the sum of errors added to all the 
neighbors is exactly q(no,nl). The extra factor of two for 
orthogonal neighbors (i.e., vertically and horizontally adja 
cent neighbors) is because vertically or horizontally oriented 
error patterns are more perceptible than diagonal patterns. 

The contone pixels z(no,ni) which have the next class 
number k + 1 are then similarly processed. The pixel values 
z(nc,ni) are of course not the original contone values but 
the adjusted values according to earlier diffusion steps (1). 
When the algorithm terminates, the signal h(nc, ni) is the 
desired halftone. Usually an image is enhanced [4] before 
dot diffusion is applied. 

3. MATHEMATICAL DESCRIPTION OF 
DOT-DIFFUSION 

Let L denote the number of classes. Let xk denote a vector 
whose elements are the pixels of the original contone image 
belonging to class k in some order. Let x denote a vector 



whose elements are the pixels, in some order, of the con- 
tone image. For example, x = [xiTxsT . . .xL~]~. Each of 
the vectors xk is a polyphase component [9] of the contone 
image. 

that is, q = ALe. Similarly AL-~ can be expressed in 
terms of AL-~, and so forth. This gives an expression 
for AL as a product of simple matrices, that is, AL = 
BLBL-~ . . . BsBl, where Bk represents diffusion of error 
to class k from all lower classes, and B1 = I. For example 

3.1. Quantiaer Error q and Halftone Error e 

In the dot diffusion process, the pixels which are quantized 
As= [6, D;2 ;] [+I ; ;] (4) 

by the twolevel quantizer are modified versions yi of the -- 
original vectors xi, the modification being that we diffuse BS B2 

the quantization errors from lower classes processed earlier. 
Since the pixels in class 1 are quantized directly, we have 

Since det AL = I, AL is invertible. 

y1 = xi. Let hi denote the halftone vector obtained from 
quantizing this to two levels. The quantizer error q1 = 
yi - hi is then diffused to those neighbors of the pixels 
of xi, which have a higher class number. For example, xz 
is replaced with ys = xs + Dpl(y1 - hl) where Da1 is a 
matrix representing the diffusion coefficients (i.e., quantities 
like 2/w and l/w in equations (l(a)) and (l(b)). We then 
quantize yz with the two level quantizer to produce the 
halftone hz for all the pixels in class 2. The quantizer error 
qa = ys - h2 is then diffused to the higher class pixels. 
For example, consider class 3 pixels. In general these pixels 
receive diiused error from q1 and qs. Thus, in general, the 
class vector xk is modified to 

3.2. Expression for diffused image 

The image h whose pixels come from hk is the halfione 
image. The pixels from the original contone, diffused, and 
halftone images can be arranged in the form of vectors x, 
y, and h, where y and h are defined similar to x. The 
quantizer error vector q and halftone error vector e are 
defined as q = y - h and e = x - h. We can now express 
the diiused image y in terms of the original contone image x 
and the halftone image h as follows: y = q+h = ALe+h = 
AL(X - h) + h, that is, 

y=ALx+(I-AL)h (5) 

yk=Xk+Dkl(yI-h)+DkP(yz-ha)+... This expression allows us to characterize the so-called in- 
verse halftone set in a nice way. Let yi and hi denote, 
respectively, the ith scalar component of y and h. Since yi 
is directly quantized to yield hi we see that 

+Dk,k-l(yk--l -hk-I) (2) 

and then auantized to obtain the halftone hk. Proceeding 
in this way, the halftone pixels hk for all classes 1 5 k 5 J? 
are generated. The quantizer error vector qk and halftone 
error vector ek for class k are given by qk = yk - hk, 
ek = xk - hk. Subtracting hk from both sides of (2) we get 
qk = ek + Dklql + Dkzqs + . . . + Dk,k--lqk-1, that is, 

91 = el 

CIS = ea + Dalql 

2 0.5 if hi = 1 
2/i (6) 

< 0.5 if hi = 0 

Given a halftone image h and the halftone algorithm, the 
inverse halftone set C is the collection of all image vectors 
x which yield the halftone image h. That is, an image x 
belongs to C if and only if the vector y computed using (5) 
satisfies Eq. (6). Substituting x = h in Eq. (5) , we see 
that h belongs to C. 

93 = es + D31q1 + Dslql (3) 

etc. By starting from the first equation, we can sequentially 
replace qi in terms of ei, es-1 . . . , on the right side of Eq. 
(3), resulting in an expression of the form 

[ST-ST . ..dlT = AL[eTeT . ..eZIT 

3.3. A closed convex subset of C 

We will see now that the inverse halftone set C is convex 
but not closed. We then show how to construct a subset 
Si c C which is closed and convex. This will be useful 
Sec. 4. For convenience of discussion let us renumber the 

where AL is a matrix depending on the elements of the 
smaller matrices Dij. We now show that AL can be gener- 
ated from AL-~ as follows: from Eq. (3) 

qL = [DL~ DL~ . . . DL,L-I][&~...c&.~]~ +eL 

elements of the halftone h such that it can be partitioned 
as h = [ lTOTIT. where 1 = [ 11.. . llT. The elements of 
x,y and the matrix AL are also renumbered accordingly. 
Then the diffused image vector y is 

which shows that 

q1 
q1 

II 1 

el where A,,Ab and c do not depend on x or y. Here y. > 
I 0 AL-I 0 e2 0.5 x 1 and yb < 0.5 x 1 (vector inequalities are interpreted 

ZZ componentwise). That is, the inverse halftone set C is the 
DLI DL~ . . . DL,L--I I I[ IS 1 0 I i set of all x satisfying A,x > d, and &x < di,. Given two 

22 
” 

AL 22 
image vectors x(l) and x(z) satisfying this, we can readily 

9 e verify that the linear combination ox(l) + (1 - a)~(~) also 



satisfies the above equation whenever 0 5 (Y 5 1. This 
shows that the set C is convex. However, since C is the 
intersection of the closed set A,x 2 d, and the open set 
&,x < db, it is not closed. 

The digitised subset. Now consider a subset D C C 
such that all images in ‘D are digitized to, say, 8 bits/pixel. 
The set D is clearly not empty because the halftone image 
h is certainly a member of 2). With x chosen from this 
digitized subset D, the elements yi of y also take values 
from a discrete set. So we can always find an e > 0 such 
that none of the yi’s fall in the open interval (0.5 - e, 0.5). 
So Eq. (6) is replaced by 

2 0.5 if hi = 1 

l/i 
50.5-e ifhi= 

for some fixed e > 0 that can be precalculated from A and 
h. We see that if x is in the digitized subset 2), then 

Aax 2 da and &X < db, 

where the vector da now depends on E as well. 
The closed convex subset. Since 2) is a discrete 

finite set, it is closed but not convex. Now consider a set 
Si that is bigger than 2) by defining it to be the set of all 
image vectors x for which Eq. (8) holds, or equivalently, 
Eq. (7) holds. We see that this set is both closed and 
convex. Since Eq. (7) holds, Eq. (6) holds which shows 
that x E C. Summarizing, the three sets Do,& and C have 
the relationship 2) c Si c C. The set C is convex but not 
closed. The digitized subset 2) is closed but not convex. 
The intermediate set Si is closed and convex, and can be 
described compactly as Ax 5 b where A = [ -AzArlT 

and b = [ -d:drlT. 

4. APPLICATION IN INVERSE HALFTONING 

The method of POCS has been used very widely in many 
applications [7], [2]. Assume the unknown signal f be a 
vector in a Hilbert space H. Furthermore f is known apriori 
to belong to the intersection of two sets Si and Ss. Let pi 
be the projection operator from H to Si. That is, for 
any x in H the vector PiX is in Si, and moreover Pig = g 

for any g in Si. Define the composite operator P dgf PaPl 
and consider the iteration fk = Pfk-1, with initial vector 
fs. Then, according to the POCS theorem (Theorem 2.4- 
1 in [7]), the vector fk converges weakly ’ to a point fiim in 
SlnSz. 

The contone image {x} is halftoned with a known algo- 
rithm (e.g., dot diffusion with known class matrix), to yield 
a halftone h. From this h, and using our knowledge of the 
halftoning process, we have to construct a contone approx- 
imation xopproz subject to two conditions, namely (i) if it 
is halftoned, the result is again h, and (ii) xarrror should 
be an “acceptable” approximation of x. 

The first set, Si is the set of all images such that the 
given halftoning algorithm yields the llxed halftone h. Evi- 
dently, the original contone image, x, belongs to Si. From 

‘The term “weakly” means that the inner product (f, fk) con- 
verges to (f, fiim) 

the results of Sec. 3, it can be shown that the halftone h 
itself belongs to Si. We say that & is the space domain 
constraint set. For the second condition we have to de- 
fine a set Sz to represent “natural images” which have cer- 
tain smoothness properties. Since Sz is usually constructed 
with the help of lowpass operators, it will be called the fre- 
quency domain constraint set. If & and Sz are closed 
and convex, then we can start from an arbitrary initial im- 
age fo # 0 in Lz and perform the projections 

gk =fifk-1 (space-domain projection) 

fk = plg& (frequency-domain projection). 

That is, fk = P&f&1. According to the POCS theorem 
this iteration converges to a member in the intersection of 
& and Sz. If we are willing to accept any member in the 
intersection to be a valid approximation of the contone x, 
we are done. 

In the actual algorithm we have to identify the projec- 
tion operators PI and Pa which take an arbitrary image in 
& and project onto sets & and Ss. For our application 
we already showed, using the mathematics of the dot diffu- 
sion algorithm (Sec. 3), that the set Si is a closed convex 
set. In the past, lowpass filtering has been used [2] as an 
approximation for Pa, the rationale being that, many nat- 
ural images are lowpass. But unfortunately LTI filtering 
is not a projection operator, that is H’(ej”) # H(ej”), 
unless H(ej”) is an ideal filter with passband response of 
unity and stopband response of zero. In [2] the authors use 
partial reconstructions from DCT and SVD (singular value 
decomposition) as other possible choices for the projection 
operator. In this paper we use a multirate filter opera- 
tor which is an orthogonal projection retaining the lowpass 
properties. 

4.1. The Frequency Domain Projection 

Fig. 1 shows the two dimensional filter bank used in our 
work for this frequency domain projection. Here HO(Z) and 
HI(Z) are one dimensional filters, so the Iilter bank has 
separable two-dimensional analysis filters [9]. The notation 
J. (2,l) means decimation by two in the horizontal direction 
and no decimation in the vertical direction. The notation 
t (2,l) similarly stands for the separable expander. In our 
work we actually used Daubechies’ lo-tap FIR filter for the 
lowpass lllter HO(Z). The highpass filter HI(Z) was chosen 
in the usual way [9] to obtain the orthonormal filter bank. 
With HO(Z) and HI(Z) denoting a lowpass/highpass pair, 
the signal ssc(nc, ni) is the low-low subband. If y(ns, ni) is 
reconstructed using this subband alone, then we can regard 
it as a “multirate” lowpass version, which at the same time 
is an orthogonal projection onto a closed subspace (which 
is therefore a closed convex set). 

4.2. Implementation of Space Domain Projection 

The space domain constraint on the inverse halftone is that 
it should lie in the closed convex set Si. In order to imple- 
ment the POCS method we have to know how to project an 
arbitrary intermediate image vector v E Lz onto Si. Here we 
use an equivalent definition of projection [7, Sec. 2.21. The 
projection ? of v onto Si is the unique vector in Si such 



that the Lz error norm ]]v - ?]I is minimized. So, we sim- 
ply solve a minimization problem subject to the constraint 
G E Sl. That is we find ? which solves 

m:m [Iv - ?I]’ subject to AG’lb (9) 
” 

This is a quadratic programming (QP) problem and can be 
solved using standard techniques from the Matlab toolbox. 
In the interest of efficient programming, the QP problem 
was broken into several subproblems by partitioning the im- 
age into blocks. For this, 9 x 9 overlapping blocks are used. 
A further detail in the implementation is that the matrix A 
in the constraint equation must be modified to take into ac- 
count the fact that the original image x is enhanced with 8 
highpass filter, Fenh(zs, zi) = lo-(zc+l+~,‘)(zi+l+t;~) 
before halftoning (as described in [4]). 

5. CONCLUSION AND EXAMPLES 

The frequency domain projection described above implicitly 
assume that the original contone image is in the subset Sz. 
Given an arbitrary image z(nc, ni), we can replace it with 
its projection onto Sz before halftoning (i.e., compute the 
partial reconstruction y(ns, ni) by using see(ne, ni) alone, 
and then halftone y(ne,ni)). This preconditioning en- 
sures that the desired inverse halftone is indeed in the in- 
tersection of & and Sz. We found experimentally that for 
more natural images, the projection onto Sz is nearly as 
good as the original image, so such an initial conditioning 
is not a severe loss of information. Fig. 2 shows the in- 
verse halftoned image (psnr=29.26dB with respect to origi- 
nal peppers and psnr=31.73dB with respect to projection of 
peppers image onto Sz). As a final remark we note that in 
many examples, the POCS algorithm converges to a good 
solution even without the preconditioning. 
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