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ABSTRACT

We propose a new MODE-based direction of arrival (DOA) esti-
mation algorithm with an improved SNR threshold as compared
to the conventional MODE technique. Our algorithm preserves all
good properties of MODE, such as asymptotic efficiency, excel-
lent performance in scenarios with coherent sources, as well as a
reasonable computational cost. Similarly to root-MODE, the pro-
posed method does not require any global multidimensional opti-
mization since it is based on a combination of polynomial rooting
and a simple combinatorial search. Our technique is referred to as
MODEX (MODE with EXtra roots) because it makes use of a cer-
tain polynomial with a larger degree than that of the conventional
MODE-polynomial. The source DOA’s are estimated via checking
a certain (enlarged) number of candidate DOA’s using either the
stochastic or the deterministic Maximum Likelihood (ML) func-
tion. To reduce the computational cost of MODEX, a priori infor-
mation about source localization sectors can be exploited.

1. INTRODUCTION

MODE is a recently developed DOA estimation technique which
is known to be statistically efficient when either the SNR or the
number of snapshots NV is sufficiently large [5]. In the case of a
Uniform Linear Array (ULA), MODE requires a very simple im-
plementation based on the eigendecomposition of the array covari-
ance matrix and polynomial rooting [3], [5], [6]. In contrast to the
eigenstructure methods [3], asymptotic efficiency is achieved by
MODE for both uncorrelated and coherent source scenarios [5].
These excellent properties make root-MODE a strong candi-
date for the best possible ULA processing algorithm with nearly op-
timal asymptotic performance/complexity tradeoff [3], [6]. How-
ever, MODE is known to be only a large sample approximation
of the ML. method. Therefore, the statistical efficiency property is
achieved by MODE only asymptotically (for large N and SNR). In
the low SNR and short sample cases, the performance of MODE
may degrade severely [6]. This type of performance degradation is
usually referred to as the threshold breakdown effect [1], [4]. Ob-
viously, the threshold degradation may reduce the attractivity of
MODE as the “best array processing method”. Therefore, a search
for new modifications of MODE improving its threshold estimation
performance (while preserving its optimal asymptotic performance
and moderate computational complexity) appears to be a very im-
portant task. Recently, several attempts have been made to improve
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the threshold performance of MODE using the Forward-Backward
(FB) approach (see [6] and references therein). However, the results
of this study were quite unexpected. It was shown that FB-MODE
is outperformed by conventional MODE in both the threshold and
asymptotic domains.

In this paper, we present a novel MODE-based method referred
to as MODEX (MODE with EXtra-roots). The key idea of our
technique is to remove the outliers caused by the large difference
between the exact and sample signal-subspaces. This can be done
increasing the degree of the MODE-polynomial to obtain the set of
signal DOA estimates from a larger set of candidate DOA’s based
on either the deterministic or the stochastic ML criterion. It is worth
noting that MODEX has the same asymptotic performance as con-
ventional MODE. At the same time, our algorithm is demonstrated
to provide dramatically better threshold performance than MODE.
We stress that MODEX is computationally somewhat more expen-
sive than MODE, mainly because it requires an additional combi-
natorial search. However, it should be noted that the computational
cost of our technique may be reduced considerably if preliminary
information about the source localization sectors is available [1].
The additional computational cost of MODEX can be viewed as a
natural price for the significant threshold improvements achieved
relative to MODE. Furthermore, it should be noted that MODEX
can be implemented in a much simpler way than the stochastic
and deterministic ML algorithms because it avoids a nonlinear op-
timization over a multidimensional parameter space.

2. THE CONVENTIONAL MODE ALGORITHM

Assume that a ULA of n sensors receives narrowband plane waves
from g far-field sources. The nn x 1 vector of sensor outputs can be
modeled as [3]

(1) = As(i) + n(7) (1)
where A = [a(f1),...,a(64)] is the n x g matrix of the source
steering vectors, a(#) is the n x 1 steering vector toward the direc-
tion 6, s(z) is the g x 1 vector of random source waveforms, 72(%)
is the n x 1 vector of sensor noise, and g < n is the number of
sources. The parameter g is assumed to be known [1]-[6].

The n x n spatial covariance matrix of array outputs is given
by [3]
R =E[z(i)e" (1)) = ASAT +5°I (2)

where § = E[s(4)s™(4)] is the ¢ x g covariance matrix of sig-
nal waveforms, I is the identity matrix, E[-] and (-} denote the
expectation operator and the Hermitian transpose, respectively, and
o? is the noise power. The sample covariance matrix is obtained as



(3]
N 1 u W Hy.
R=5) 22" (3)
i=1
The eigendecomposition of (3) is given by
B = Eshsk™ + ExAnED ()
where the ¢ x g and (n — ) x (n — g) diagonal matrices A s and

A contain the g andn — ¢ signal and noise-subspace eigenvalues,
whereas the columns of the n X g and n X (n — g) matrices

Es=[é1,8s,...,8] En=[q11,8q12,-.-,8n] (5)

contain the signal and noise-subspace eigenvectors, respectively.
The conventional MODE algorithm estimates the source DOA’s
via the minimization of the following function [5]:

fuone (b) = tr{IL(b) EsW E§ } (6)

where
() = B(B¥B)"'BY (7)
W = (As — 6°I)*A5" 8)
&ZZniqtr{AN} (9)

and B is a standard n x (n — g) Toeplitz matrix [5]

bo ... by 0
BY = (10)
0 bo ... by

defined by the (g+ 1) x 1 vector of the complex-valued polynomial
coefficients
b= (bo,bi1,...,bg)" (11)

It can be shown [5] that an asymptotically efficient estimator of
the source DOA’s can be formulated using the following two-step
procedure:

o Step 1. Obtain an initial estimate b of (11) by minimiz-
ing the following quadratic function:

f1(b) = tr{BEEsWE} B} (12)

o Step 2. Obtain the refined estimate b by minimizing the
quadratic function

f2(b) = tr{(B" B) ' BEEsWES B}  (13)

where the matrix B is made from the estimate b ob-
tained in step 1. Finally, find the estimates of the source

DOA’s by rooting the polynomial with coefficients b.

To exclude the trivial solution, the minimization in steps 1 and
2 should be performed under the norm constraint. Additionally, the
conjugate-symmetry constraint [S] should be used. Note that step 2
can be iterated a few times, though even without repeating this step
the asymptotic efficiency is guaranteed [5].

3. THE MODEX ALGORITHM

In the situation of low SNR or short sample size, MODE may suffer
from the threshold breakdown effect. Qualitatively speaking, this
effect may be caused by the fact that the sample signal-subspace
eigenvectors have a significant component in the null-space of the
matrix A. In this case, MODE incorrectly tends to spend one or
more roots to model this component as a signal source. Of course,
this leads to a strong degradation of the performance of MODE,
because in this case there are not enough roots left to model the
signal sources (i.e., g sources will be modeled using less than ¢
roots). The key idea of MODEX is to use p (p < n — g) extra-
roots to avoid this undesirable phenomenon. With such extra-roots,
there will be no problem with wrong signal interpretation because
the additional roots will provide an adequate modeling of both the
signal and noise components. In order to obtain p extra-roots, let us
use “zero-padding” on the weighting matrix (8), i.e., let us consider
anew weighting matrix with extended dimension (g + p) x (g + p)

W = diag{W,0,...,0} = [v: g ] (14)
With (14), the MODE function (6) can be extended as
fuone (B) = tr{IL(B)EW E" } (15)
where the (g + p + 1) x 1 vector
b= (bo,b1,...,bg1p)" (16)

contains the coefficients of the polynomial of enlarged degree g+ p,
the n X (n — g — p) matrix B is defined as

Bo ... bgip 0

0 Bo

and the n x (g + p) matrix E is given by

E =[é1,é2,...,8q4p] (18)
From (14) and (18), we obtain that
EWE" = EsWEY (19)
Hence, the extended MODE function (15) is given by
fuope (B) = tr{IL(B)EsW Eg } (20)

From (20), we obtain a very simple interpretation of the extended
MODE function (15): the only difference between the functions (6)
and (20) is that the “enlarged” vector (16) is used in (20) instead of
the conventional vector (11) used in (6). Though the the frame-
work of (15) may be also useful for preventing subspace swaps [2],
we see that the minimization of the function (15) with the “zero-
padded” weighting matrix (14) involves the signal-subspace only.
The minimization of the function (20) can be performed using
the two-step procedure outlined in Section 2. However, after the
minimization of (20), the “signal” roots of b cannot be sorted out
based on their proximity to the unit circle. Moreover, though the
extended MODE criterion (20) with a good sorting algorithm is ex-
pected to remove outliers and improve the threshold performance,



the use of (20) alone cannot guarantee the same asymptotic perfor-
mance as achieved by the conventional MODE algorithm.

To preserve the asymptotic performance of MODE and pro-
vide an adequate signal root sorting procedure, we use two different
tricks. First, we propose to exploit all 2g + p roots of the polynomi-
als with the coefficients (11) and (16) which are obtained after the
minimization of the functions (6) and (20). Moreover, we will use
alternatively either the deterministic or the stochastic negative ML
functions

foer—ML(6) = tr{Pj‘R} (21)
fsTo—mw(8) = logdet {P4 RP,

+ tr {Py R} P4} (22)

n—gq
to check all possible combinations of ¢ DOA’s taken from the 2g+p
candidate DOA’s (candidate roots), where 8 = (61,02, ...,04)7 is
the g x 1 vector of unknown signal DOA’s. The purpose of this
search over the candidate DOA’s is to pick up the combination for
which the negative ML function has a minimum. In (21) and (22),

Py=AA" Py=1-P4 A'=(Aa%A)'A" (23)

Let us define the (2g + p) x 1 vector of candidate DOA’s as
A T o PO ~ T
boso = (07,8 ) = (01,100,810 000)  (20)

where 6; G¢6=1,2,...,90and 0; (G =1,2,...,q+ p) are the

estimates of the sth DOA obtained by the minimization of the con-

ventional and extended MODE functions (6) and (20), respectively.
The ML-based sorting procedure can be formulated as

OmopEX =

arg min  {fper-mr(0)} (25)
CecAND

éMODEX = arg min {fSTO—ML(e)} (26)
CUcanDp

alternatively, where € is a ¢ x 1 vector whose elements form a
subset® of the vector caND .
We are now ready to formulate our MODEX algorithm:

o Step 1. Obtain the vector of candidate DOA’s (24) via
independent minimization of the functions (6) and (20)
and combining the so-obtained DOA’s. For each min-
imization, exploit the two-step procedure outlined in
Section 2.

o Step 2. Check all possible combinations of g DOA’s
taken from the candidate DOA’s using either the deter-
ministic ML function (21), or, alternatively, the stochas-
tic ML function (22). Finally, obtain the estimates of the
source DOA’s as the combination which minimizes the
ML function (according to either (25) or (26)).

This algorithm avoids multidimensional optimization since it
is based on a combination of polynomial rooting and combinatorial
search. The number of combinations to be checked depends on the

L For the sake of simplicity, we use similar notation for sets and vectors
meaning that any d X 1 vector cotresponds to a set with d elements.
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Figure 1: MODE estimates in the first example.
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Figure 2: MODEX estimates in the first example.

number of sources and the parameter p (which is chosen by the
user), and is given by

_(2¢+p\ _ (29+p)!
M_( q )_q!(q+p)! (27)

It is worth noting that M is independent of the number of sensors
and is reasonably small for a moderate number of sources. For
example, for ¢ = 4 and p = 4, the combinatorial search in our
algorithm requires testing M = 495 points, which is comparable
with the complexity of the spectral search in the standard MUSIC
algorithm [3].

However, the number of points (27) may be unacceptably high
if ¢ > 1. In such a situation, a sector information can be used
for lowering this number and decreasing the computational cost of
MODEX. Assume that the source localization sectors (clusters) are
pre-estimated as [1]

Os = [011,0:1]U[012,6:2] U+ U [B1,m, r m] (28)

where 6); and 6 ; are the left and the right bounds of each sec-
tor, respectively, and m is the number of sectors. Note that such
preliminary sector information is used in a variety of popular array
processing methods and can be easily obtained via conventional



UNCORRELATED SOURCES
T T

“a o——o CONV.MODE
N #— -+ MODEX (DET-ML)
& - -»  MODEX (STO-ML)

RMSE (DEGREES)
3

SNR (DB}
Figure 3: RMSE’s vs. the SNR for the second example.
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Figure 4: RMSE’s vs. the SNR for the third example.

beamforming [1]. The central idea of exploiting the sector infor-
mation (28) is to reduce the number of candidate DOA’s prior to
the MODEX algorithm by removing from the candidate DOA set
(24) the DOA’s which lie outside the intervals (28). Introduce a
new vector @canp = g@s Ocanp, where G _ is the operator
which selects only the elements of the vector @canp that belong to
the sectors (28). This operator is expected to compress the orig-
inal vector O@canp of dimension dim {@canp} = 2g + p to
the vector @canp of smaller dimension, say dim {éc AND} = d,
d < 2q + p. The compression ratio (2g + p)/d depends on the
accuracy of the sector information (28) and on the chosen value of

p.

4. SIMULATION RESULTS

In our simulations, we assumed a ULA of ten omnidirectional sen-
sors with half-wavelength spacing, N = 100 snapshots, and two
equally powered narrowband sources with DOA’s §; = 10° and
f2 = 15° relative to broadside. In all examples, the parameter
p = 4 was assumed and no sector information was exploited in
MODEX.

In the first example, we assumed uncorrelated sources with
SNR = —2.5 dB. In Figs. 1 and 2, 100 estimation trials are shown

for conventional MODE and MODEX, respectively. In the last al-
gorithm, the deterministic ML function was used [eqn. (25)]. This
figure clearly demonstrates an improved performance of our tech-
nique relative to MODE: MODE is not able to resolve the closely
spaced sources, whereas MODEX resolves them in almost all trials.

In the second example, we assumed uncorrelated sources once
again. Fig. 3 displays the DOA estimation Root-Mean-Square Er-
rors (RMSE’s) versus the SNR. A total of 1000 independent sim-
ulation runs were performed to obtain each simulated point. The
stochastic Cramér-Rao Bound (CRB) is also shown.

In the last example, we used the same scenario as in the sec-
ond one but assumed coherent sources. Fig. 4 displays the DOA
estimation RMSE’s versus the SNR.

From Figs. 3 and 4, we see that MODEX has much better
threshold performance than conventional MODE. It is also worth
noting from these figures that the asymptotic performance of MOD-
EX is similar to that of MODE (i.e., MODEX preserves the asymp-
totic efficiency of MODE). In the case of uncorrelated sources, the
performance of MODEX does not depend significantly on what
kind of the ML function is employed. However, in the case of
coherent sources the stochastic ML function seems to be the best
choice for MODEX.

Interestingly, MODEX can be interpreted as performing a local
search of the ML criterion. We stress that (21) and (22) tend to have
many false minima located in the vicinity of the global minimum,
so that any standard local search algorithm is bound to fail, even if
initialized close to the global minimum. It is therefore worth noting
that among the fairly limited number of points in the parameter
space tested by MODEX there is almost always one that falls near
the global minimum of the negative ML criterion.

5. CONCLUSIONS

We proposed the MODEX algorithm, a new MODE-based tech-
nique having drastically improved SNR threshold relative to con-
ventional MODE. Our technique preserves all good properties of
MODE, such as asymptotic efficiency, reasonable computational
cost, and excellent performance in scenarios with highly correlated
sources.
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