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Abstract 
This paper presents a fast algorithm to perform the 2-D 

discrete periodized wavelet transform based on the operator 
correlation algorithm (OCA). The OCA-based algorithm needs 
half of the multiplications and bits required by the classical 
algorithm. The OCA-based algorithm is modular inherent. It can 
be easily mapped to VLSI design. 

I. INTRODUCTION 
The 2-D discrete wavelet transform (DWT) [ 11 is a powerful 

tool for digital image analysis [2-31 in which perfect 
reconstruction (PR) result is usually required for the inverse 
process. By this means, the reconstructed image from the inverse 
2-D DWT is identical to the original image to the 2-D DWT. 
Thus, images at each resolution level (or octave) should be 
regarded to be periodic. This periodic@ implies that periodized 
wavelets [4] should be used in the 2-D DWT, i.e., the 2-D 
DP WT. 

The classical pyram,d algorithm (PA) [5] and the recursive 
PA (RPA) [7] associated with the short-length FIR filtering 
algorithm [6] are essentially based on separate computation to 
perform the 2-D DPWT, i.e., using the I-D DPWT for row and 
column transformations. Since the classical I-D DPWT has time 
lag between the low-pass and high-pass filtering, the non- 
synchronization is an adverse factor for 2-D fast algorithm 
design. Moreover, long-bit representation of separate 
computation eventually results in bad efficiency for special- 
purpose hardware and VLSI des,gn. 

Applying a homeomorph,c high pass filter. an operator 
correlation algorithm (OCA) is presented to implement the 
modified 2-D DPWT. Based on the OCA. this paper also 
proposes the 2-D OCA-based fast algorithm that needs only half 
of the multiplication counts (MCs) and bits representation 
required by the classical 2-D PA. 

In next section, the 2-D DPWT is briefly reviewed. The 2-D 
OCA is presented in Section III. The 2-D OCA-based fast 
algorithm. a comparison, and finite precision analysis are 
presented in Section IV. Finally. Section V includes the 
conclus,on and remark. 
II. Review of the 2-D Discrete Periodized Wavelet Transform 

Periodized wavelet is generally consisted of periodically 
shifted wavelets such as the compactly supported wavelets, 
which have reasonable decay. These periodized wavelets form an 

orthonormal basis in the Hilbert space L*([O,l]) The theorem 

of I-D DPWT is based on the multi-resolution analysis [I]. 

Given a negative integer J , -J is referred to as the 

decomposition levels. Let N = 2-J , N denotes the number of 

original sampled data of a 1-D finite signal. Let the tap vectors 

h , g be the N-dimensional column vectors defined by 

h= [h,,h ,,..., hN-,]‘and g=ko,g,,..., g‘+,r which 

represent the low band and high band discrete filter coefficients 

of the I-D DPWT, respectively. The tap vectors h , g sat,sfy 

‘f’h: =l, ‘i’h, =&.and vi’(-l)‘h, =0, (1) 
I=0 r=O ,=O 

g, = (- 1)’ $,+ > G? 

where (1 -l),,, denotes the residual of (I -I) mod N 

0 1 
Let T be the N x N matrix defined by T = [ 1 I ’ N-l o 

where IN-, is the (N - 1)x (N - 1) identity matrix. Thus. the 

low-pass filter H and the high-pass filter G for the I-D 

DPWT can be expressed by H = [T”h,T2h,....TNm2h,TNh, 

TN+2h,...,T2N-2h] and G = [T”g.T2g ,..., TN-2g, TNg, 

TN+2g,...,T2N-2 g], respectively. Note that both H and G 

are N x N matrices. 

For H and G defined above, let sJ =[s,,s? . . . . . sv] in 

I:,, a finite-dimensional multi-resolution approximation 

subspace. be the original sampled data of a finite I-D signal For 

J E {J,J + I,..., -l}, the elements s,,, and d ,+, can be 

obtained from s, That is 

s,,, =s,H and d,,, =s,G. (3) 

The elements s,+, and d,,, are the 1-D DPWT coefficients 

corresponding to the projection of the 1 -D signal onto subspaces 

V,+, and W,+, . respectively. Eq.(3) is the iterative form of I-D 

DPWT. 
The 2-D DPWT is usually performed by a separable 

approach using two transforms of I-D DPWT. For J < j < 0, 

let ss,+, , sd,+, , ds,+, , and dd,,, denote the projection of 

a finite 2-D signal (an image) onto the orthonormal bases in 

subspace V,,, and its orthogonal complement I+‘,+, , 

respectively. The iterative form of 2-D DPWT can be 
represented by 

ss,+, =H’ss,H, sd,+, =H’ss,G, ds,,, =G’ss,H, 

and dd,,, =G’ss,G (4) 

where H’ and G’ denote the transposes of H and G ~ 

respectively. 
From Eq. (2) it is clear that the low-pass filter relating to 

the high-pass filter has l-2 points of time delay at the beginning 

process. The classical 2-D PA based on Eq. (4) needs 1 2 + I 

MCs and 1’ -1 addition counts (ACs) to compute per 2-D 

DPWT coeff,cient. For converting row transform to column 
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transform, the 2-D PA needs N 2 words to store the 
intermediates of row-transformed data. 

III. The OCA Algorithm for the Modified 2-D DPWT 
To eliminate the time lag, one defines a linear space C(G) 

constituted of the column vectors in the non-periodic part of 
matrix G Obviously, the operations of addition and scalar 

multiplication are continuous for an adequate norm definition 
in the space C(G) Given an integer R. E Z, one defines a 

new continuous linear space C(G2’) constituted of the 

column vectors defined in the matrix G’” = T2”G. As 

defined above. there exists a continuous function f from 

C(G) into C(G 2’) such that for each element d ,+, E C(G) , 

/(d,+,)=d T” = d T2”G= d:,, E C(G2’). 
/+I J+l 1 J 

Suppose 

there exists another element d’/+, E C(G) and dlJ+, = 

f-'@;+A, one obtains d’,,, = f-‘td;+,)=d;+,T;,: = 

d ,&+,T,;: =“I+, . This result implies that the function f is 

injective. Thus, for a given R E Z , the two spaces C(G) and 

C(G 21) are linearly homeomorphic [8]. 

Let 21 =I -2, the modified 2-D DPWT using G’-2 is 

computational efficiency because both the low-pass and high- 
pass filters can deal with the common data synchronously. The 
mod,tied 2-D DPWT can be implemented by an OCA process 
described as follows: 

Let a(x. y) denote an N x A4 image and w(k,!) denote 

an K x L operator, where 0 <K 5 N and O< Ll121. The 

m - s/z@ operator correlation processes ( o, ) of a(x. y) and 

w(k, !) IS defined by 

L-I K-l 
w(k.e) 0, a(x,y) = c c a((i.m+k),,(j.m+e)L).w(k,e) 

I=0 k=O 

= b(l. J). where b(i. i) iS a (int( 5) + 1) x (int(y) + I) 

Image and int(x) denotes the integer part of x Let m = 2, 

the 2-D modified DPWT can be then rewritten by 

ssJ+,=W~.,,o~ss,> sdJ+,=WLH ozss,, 

ds ,+I =W,, o2 ss,,and ddJ+,=WHH o2 ssJ, (5) 

where W,S1,, W,., , W,,~, and W, are called the 2-D 

DPWT operators defined by 

w,,. = [Wnl,!? 1=[~;4,l.W,., = [Wm.,, I= it- 1)” h# . h l-l-,, 1 1 

WM. = [Wm.,, l=[(-l)“h,-,m, .h,,l, and 

W “” = [w,,,, 1 = K-1)“‘” h ,-I- rn h l-l-, II 3 (6) 

where m,n E {O,l;..,I - 1). The elements w,,,,~ in the 

operators are called the 2-D DPWT filter coefficients. To 

compute per 2-D DPWT coefficient, the 2-D OCA needs 1’ 

MCs and I’ - 1 ACs without storage to save the intermediates. 

Note that in the 2-D OCA, l-2 columns on the left side of ss, 

should be duplicated on the right side of ssJ so that the 2-D 

DPWT coefficients of l/2- 1 columns on the right side of ss /+, 

can be undistorted. Similarly, the duplication of 1-2 rows on the 
topside of ss J is needed. These data are called boundary data 

of ss, and ss J+, 

IV. The OCA-Based Fast Algorithm 
The basic idea behind the OCA-based fast algorithm is to 

remove the redundancy of 2-D DPWT filter coefficients ( /w,,,,,, 1 ) 

and make the process suit for sequential data input of row scan. 
The fast algorithm depicted in Fig.1 is principally composed of 
three functional processes: a parallel multiplication and two 
orientated data accumulations called row-accumulator and 
column-accumulator. Firstly, each one of the input ssJ will be 

multiplied by all the non-duplicate Iw,,,~( to produce the 

weighted data ( a,,,, ). Then, in terms of an adequate orientation 

arrangement for the weighted data accumulation, the four bands 
2-D DPWT coefficients at the resolution levelj+l can be derived 
simultaneously. For this purpose, 1 row-accumulators and two 
column-accumulators are needed. In each one of the row and 
column accumulators, data are accumulated in two orientations, 
which are mutually opposite for low-pass and high-pass filtering. 
Essentially, both the row and column accumulators are based on 
a similar algorithm of pipeline processing. The I row- 
accumulators accumulate the weighted data of input in row 
orientation synchronously. The column-accumulator accumulates 
the row-accumulated data in column orientation sequentially. 
Hence, for each band processing, the column-accumulator needs 
(I-l) buffers to store row-accumulated data of (I-1) rows. Each 
buffer has N/2 cells of storage. Due to the mirror-reflectIon 
properties of the four 2-D DPWT operators, (1-2) buffers in each 
column-accumulator can be shared for two-band processing. For 
sharing buffer, the I/O paths are controlled by row coordinate. 
The desired outputs appear only at even coordinate of the row 
and column of current input. One goal of the algorithm design is 
to make the last input and the production of final output can be 
simultaneous. To prevent from double input of the boundary data 

of SSJ ) the semi-manufacture of accumulated boundary data 

should be preserved in the algorithm to produce undistorted 2-D 
DPWT coeff,cients on the right side and down side boundary of 
ssJ+, Hence, the boundary data of ssJ+, can be generated ,n 

parallel at x = N, or y = N, , where N, = 2-‘, x and y denote 

row and column coordinates of the current input of ss, , 

respectively. 
Let N=l6 and 1=10, An example of the OCA-based fast 

algorithm is illustrated in Tables I and II. The symbol + 

denotes that the right-side output of accumulated data will be 
produced at the current left-side Input with coordinate x or y The 
example clearly reveals the whole process. The algorithm has the 
synchronism property, and independence from the input data and 
filter length. It is also obvious that the fast algorithm has 
capability to decompose an image to any desired terminate level. 

A comparison of several 2-D DPWT algorithms is shown in 
Table III. Essentially. the RPA is a I-D method, it can not be 
directly applied to the 2-D case by a simple RAM transposer. 
The main idea behind the RPA is to derive a specific output 
order by the earliest instance schedule. This idea can be applied 
to the 2-D case based on interspersing the octave data of other 
stages into the octave data of first stage [9]. In principle, the 2-D 



RPA is a separate computation algorithm. It needs lC+ C 
counts of both multiplication and addition to compute each 2-D 
DPWT coefficient, where C is the needed counts of 
corresponding 1-D operation. To convert row transform to 
column transform, row-transformed data of all stages should be 
preserved for earliest instance scheduling. Hence, the 2-D RPA 

-J+I 

needs (I-l)N 1 2Jf’ o 2(1-l)N words to store row- 
/=-l 

transformed data. From Fig.3. it is clear that the 2-D OCA-based 
fast algorithm needs IN + B words to store row-transformed 

data, where B = ([- 2) (2N + 1) denotes the words of storage 

requirement of boundary data for PR desire. 
Four Daubechies’ wavelets of filter length I=4,6,8,and 10 are 

used to analyze the finite precision performance of separate 
computation and non-separate computation i.e., directly using 2- 
D filter coefftcients. The round off error of finite-bits 
representation of 2-D filter coefficients is shown in Figs. 2 and 3 
(including one sign bit). It reveals that for a desired accuracy of 
finite-bits representation, non-separate computation can save 
nearly half of the bits needed by the separate computation. 
V. Conclusion 

Based on a homeomorphic high pass filter, an operator 
correlation algorithm (OCA) has been presented in this paper to 
implement the modified 2-D DPWT. Moreover, a fast algorithm 
of OCA-based suiting for special-purpose hardware was also 
proposed. The 2-D OCA-based algorithm needs only half of the 
multiplications and bits required by the classical algorithm to 

compute one 2-D DPWT coefficient and requires IN + B cells 

of storage to compute N x N points of 2-D DPWT. 

The 2-D OCA-based algorithm inhered in simple modular 
can be easily mapped to VLSI design [IO]. For VLSI design, the 
origmal data should be interleaved in order to perform the 
decompositions of all stages simultaneously. In this case, nearly 
double storage shown in table I is needed to save all the row- 
accumulated data. The storage cell is implemented by shift- 
register, which is not expensive. 
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Table I. Accumulation results of the row accumulator in the OCA- Table II. Accumulation results of the column accumulator in the 

based fast algorithm (N=16). (for LL band) OCA-based fast algorithm (N=l6). (for LL band) 

N, =2-’ X: Column Coordinate of ss J , m = l;.., I N, = 2-’ y: Row Coordinate of ss, , q = l,..., N, . 

N, =I6 .x=2+ bs,, =t~,,,,~ x=14-, s,j =lsmlo N, =I6 y=2-, bsqy = tlOy y-14+ SS~,~ = qoq 

x=4 + bs, z = ts, ,. x=16+ s,,,~ =f~,,,,~ ~=4-, bss2,q = 110,~ ~164 s~4,~ = tIo,y 

x=6 j bs, 3 = ts, ,. x=16-+ s,,,~ =bs,, +ts,8 y=6 --f bss3,y = tlO,q y-16 + SS~.~ = bss,,, + tg,y 

x=8 + bs, 4 = ts, ,o x=16 + s, 6 = bs, 2 + ts, 6 ~8 + bsqy = h,c, Y=] 6 + ss6.,, = bss,,, + t,,, 

x=10 -+ s,, = ts, ,o x=16-, s,, =bs,3 +ts,4 Y-IO-+ qq = tlo,g ~-lb+ ss7.q = bss,,, +t,, 

x=12+ S,l =ts,,, x=16+ s,,,~ =bs,4 +tsm2 y=12+ SQ = tlo,c/ ~‘6 + sss,<, = bss, c, + t, <, 

N, =8 x=2 -+ bs, , = ts,,,, x=8-3 s,, =bs,, +ts,g N, =8 y-2 -+ bs.qy = tlO,y y=8 --) ss,,,, = bss,,, + ts.<, 

x=4-, bs,2 =ts,,, x=8+ s,,,~ =bs,,,2+ts,,,6 j=4 + bss2,y = $,,y y8 --) “2.4 = bss2,q + t6,q 

x=6-, bs,, =ts,,o x=8+ s,, =bs,, itsma y=6 + bss3,q = 40,q Y=8 -+ SS3.Y = bss3.q + t4,q 

x=8 -+ bs, 4 = ts, ,o x=8+ s,,,~ =bs,., +ts,2 ~=8+ bss+, = tto,t, H+ ss4.q =bq, +tz.L, 

N, =4 x=2-, bs,, =tsmlo x=4+ sm,, =bs,,,,+ts,,,, * . N, = 4 y=2 + bss,,, = tlo,q y-4+ SS,,~ = bss,,, + ts,<, + 

x=4-+ bs,2 =ts,,o +t%q4 ~=4-, bqy = tlo,c, t 
4.Y 

x=4-, sm2 =bs,2+ts,6 Y-4 + ss2,q = bq, + t6,q + 



+tsm,z 124 

N, =2 x=2+ bs,, = tsSm ,o x=2-+ s,,,, =bs,,+ts,, , N, = 2 ~“2 -+ bssl,y = tlO,q y=2 + ss,,, = bss,,, + t8,, 

fts,6+tsm4+tsm2 +t6.1 + t4,1 + t2,1 

legin(2-D DPWT) 
for(i=J to -1) { 

for( x,y = 1 to 2-j ) { 

input ss, . 

for(m, n=l to /) { // weighted data 

if (m<n) a, ,, = a,, m ; 

else a,,,, = ss, i IJ%-l,AI ; > 

for(m=l to r) { 
Row-Accumulator(); } 

‘obtain the ss,,, and ds,,, 

input s,,,, ; 

Column-Accumulator(); 
’ obtain the sd,,, and dd ,+, 

input d,,; 

Column-Accumulator(); }} 
__c_________________------------------------------ 

:olumn-Accumulator() 
The process is similar in algorithm tc 

le Row-Accumulator except that the ar- 
) 

;uments ts and td are replaced by bu&rs ( t,,g ), which are controlled by y tc 

tore row-accumulated data If y is even, buj,Ers of i=even are used to store 
ow band octaves while buffers of i=odd are used to store high band octaves 
fy is odd, the correspondence of buffers to store octaves is changed. 
/- --- _ -- _ -- __ -- _ -- - _ _- -- -- --- -- -- --- -- -- -- _ --- _ -- -- -- -- _ - -- -- _ --- -- ---- _ - _ -- -- -- _ -- _ _ _ - _ -- - 

tow-Accumulator() 

if(x=l){ q=O; // initialization 

for( n=l to 1, step=2 ) { 

ts,,, = a,,,, ; // low-pass filtering 

4,z,,, = am./-,,+I ; }} //high-pass filtering 

else { for( n=l to I ) { 

%,/-,,+I = ts,,l-,, + a,,~-,,+i ; // low-pass filtering, ts,,, = 0 

tdm,,-,,+, = td,,,,-,, + (-1)” a,,,,,, } } li high-pass filtering. td,,, = 0 

if(xiseven){if(l<x<I){bs,,,,,=ts,,,; bd,,,,l=tdm,,;} 

if(l<x){q=q+l; smq=tsm,,; d,,=td,,,,;} 

if (x = N, ) { for( n = q+l to N, ) { s,,,~ = bs,,,-, + C ts,,,,,. ; 
ll'L?Z 

d,,,,, =bd,,,,,-,,+ C td,,,,,. ; }}I N n’=l-2(n-q)-k,N,, 
,tt 2 

k E {0,1,2;~~} 

Fig. 1. The OCA-based fast algorithm for the modified 2-D DPWT. 

.I,1 
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I-D Fdte, Coeffixnts (m Bm) 

3 4 5 6 7 8 9 IO II 12 13 14 15 16 17 18 19 20 2, 

2-D Filter Coeffimnts (m BIG) 

Fig.2. Round off error analysis of finite-bits 2-D filter coefficients Fig.3. Round off error analysis of finite-bits 2-D filter coefficients 
using two transformed 1-D filter coefficients. directly using 2-D filter coefficients. 


