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ABSTRACT 

A novel adaptive step size control algorithm is proposed, 
in which the step size is approximated to the theoretically 
optimum value via leaky accumulators, realizing quasi- 
oprimal control. The algorithm is applicable to most of 
the known tap weight adaptation algorithms. Analysis 
yields a set of difference equations for theoretically 
calculating expected filter convergence, and derives 
residual mean squared error (MSE) after convergence in 
a formula explicitly solved. Experiment with some 
examples proves that the proposed algorithm is highly 
effective in improving the convergence rate. The 
theoretically calculated convergence is shown to be in 
good agreement with that obtained through simulations. 

I. INTRODUCTION 

Many types of tap weight adaptation algorithms have 
been proposed for use in FIR adaptive filters; Least Mean 
Square (LMS), Least Mean Fourth (LMF), Sign 
Algorithm (SA), Signed Regressor Algorithm (SRA), 
Sign-Sign Algorithm (SSA), erc. [I] - [6]. 

It is well known that, for any algorithm with a fixed 
value of tap weight adaptation step size, a trade-ofS 
between the filter convergence rate and the steady-state 
error does exist. If a larger value of the step size is used, 
then a faster convergence is attained as long as the filter 
remains stable. On the other hand, the smaller the step 
size, the more accurate the estimation in the presence of 
observation noise. 

Consequently, if we adaptively control the step size so 
that it stay large in the early stages of filter convergence 
and become smaller as the convergence proceeds, both 
fast convergence and low estimation error could be 
realized. Along this line of thought, many kinds of 
adaptive step size control algorithms have been proposed 
and studied. 

Mathews and Xie proposed an adaptive step size 
control algorithm based on the gradient of 
“instantaneous” error [7]. [8] proposed a method using 
correlation between error signal and replica (filter output), 
where we recognize that the correlation is large in the 
early stages of convergence but much smaller after 
convergence. [9] proposed a variable step size LMS 

algorithm in which the step size is controlled in relation 
to the error signal power. Aboulnasr and Mayyas 
improved the previous method using the correlation of 
error samples at different time instants, thus mitigating 
the adverse effect of the noise [lo]. Recently, [ 1 l] has 
proposed a unique algorithm based on a cost function 
with variable error power. 

Most of the step size control algorithms above are 
proven effective, to some extent, in the sense that the 
value of the step size decreases as the convergence 
proceeds. However, none of them, except the stochastic 
algorithm in [7], assures that the step size is optimum at 
any time instant along the convergence process. This 
implies that the adaptive step size control algorithms so 
far proposed are considered to be, more or less, 
qualitative. 

Therefore, this paper seeks a quantitative approach, 
namely, we try to develop adaptive algorithm which 
gives us not just a decreasing step size but a step size 
value as close to the theoretical optimum as possible at 
each time instant. 

The paper is organized as follows. In Section II, a 
novel adaptive step size control algorithm is proposed in 
a general form. Section III develops analysis, where it is 
shown why the proposed method gives quasi-optimum 
value of the step size. Difference equations are derived 
for theoretically calculating the filter convergence 
process for Least Mean Fourth, Signed Regressor and 
Sign-Sign Algorithms. Residual Mean Squared Error 
(MSE) after convergence is further obtained from the 
difference equations. Section IV gives results of 
experiment with some practical examples. Section V 
concludes the paper. 

II. PROPOSED ADAPTIVE STEP SIZE 
CONTROL ALGORITHM 

Tap weight update equation for FIR adaptive filters is 
given by the following general formula. 

cc”+‘) = cc”’ + a,(“‘f (e, + Y, )g (a’“‘) t (1) 

where 
p = [ Q) c,(“) ., CN_,(“)]T 

tap weight vector at time n, 
a(-) =[ a a,-,, ““, cNtl IT 

reference input vector at time n (length N ), 



a, reference input signal (stochastic process, 
colored in general), 

en error signal, 

V n additive noise, 

n time instant, 

N number of taps 

(nJ step size at time n , 

f”;- )*A. 1 
odd functions, nonlinear in general, 

gbz’“‘) = [g(a, 1, da,-,), .....g(a.-N+, II’ 1 and 
( )’ transpose of a vector or a matrix. 

The proposed adaptive step size control algorithm is 
described as follows. First the step size at time n is 
calculated as 

‘nJ 
n, = 

q”‘“‘Tq’“J ,pJ ) (2) 

where 40 (“JT4(“~ denotes inner product of vectors q,‘“J 

and q(“J each of length N , and r(“J is a scalar. qO(nJ, 

q’nJ and r(nJ are updated by leaky accumulators as 

40 ‘n+‘J=(I-p)qo’n’+p(en+ ~,)a”‘9 (3) 

4 ‘“+“=(I-p)q’“‘+pf(en+~,)g(u’“‘)~ (4) 

and 

r’“+‘J=(l-pr)in’+pr(f(em+ ~~)g(a’“J)Tu’“~Ld’)2~(~~ 

Here, p and p, are leakage factors, and the delay 

~(2 1) is chosen sufficiently large so that EIana,-ld ] z 0 

holds for a colored reference input. 
It will be shown in the next section why the step size 

given by (2) combined with (3) through (5) is close to the 
theoretical optimum or quasi-optimum. 

Assume that the leakage factors are given in an 

integer power of 2. To update q,‘“J in (3), N 

Multiplications are necessary. If the vector 

f(en + v,)g(u’“J) in (1) is calculated and stored for reuse 

in (4) and (5), N +1 Multiplications are needed to 

update r(nJ. Therefore, to calculate the step size at each 

time n, 3N +I Multiplications and I Division in total 

are required. 

III. ANALYSIS 

Suppose that the adaptive filter is applied to 
identification of an unknown time-invariant system 
whose response vector is h=[h, ,h ,,...‘h.J 
Defining “tap weight error” vector 8’“) = h -&‘I, we find 

from (1) 
&‘“+‘)= @(“La “Jf (e +” )g(u’“‘) c nn (6) 

and 
e = u(nr@(“) (7) 

No;, let us assume that the reference input is a 
stationary Gaussian process, colored in general, with 
covariance matrix R (I = E[u(n)u(n)T ] and variance OnZ, 

the additive noise is independent stationary Gaussian 
with variance B Vz, and the tap weights are statistically 

independent of the reference input (Independence 
Assumption). 

Then, from (6), one can derive the following 
difference equations for the mean and the 2nd order 
moment of the “tap weight error.” 

m(“+‘) = m(n) - q “c(n)lp(“) (8) 

K(“+‘) = K(“) - E[ a,(“)l(V(“) + V’““) + E[( ~J~(“))‘]T(“), (9) 

where 
,b) = @,(“)] , Kc”) = ~~(“)~(“~], 

P ‘“) = Aqf (e, + v”)g(u’“J)J~ (10) 

v’“’ = ./Q(e + Y )g(dnJ)e cnJr], and n n (11) 

T’“’ = 4f ‘(en + v,)g(u’“‘)g(u’“‘)‘] . (12) 

For most of the known tap weight adaptation 
algorithms, it is possible to express 

Ea[f(en + v,)g(u’“‘)] = W’“‘0’“’ v (13) 

whereE,I. ] denotes expectation with respect to the 

reference input a’“), and W”) is a matrix inherent to the 
algorithm being used. 

Mean Squared Error (MSE) is given by 

&c-j= E[e n ‘1 

= tr(R, K’“‘) 9 (14) 

where tr( . ) denotes trace of a matrix. 

Using (13) in (10) and (11) 

P 
‘#J = W’nJm’nJ 

(W 

and 
V’“’ = W’“‘K’“’ 

(16) 
result. 

Now, from (9), (14) and (16), setting the partial 
derivative of the MSE at time n + I with respect to the 

step size at time n, 3 .&fl+I)/J a;‘“‘, equal to 0, one can 

solve the theoretically optimum step size at time n as 

a,“‘)op, = tr(R, W’“‘K’“‘)ltr(R,T’“‘) . (17) 

Noting (13) and E.I(e, +v,)~‘“~]=R,,~‘“J from (3) 

we find, with some averaging delay in the leaky 
accumulator, 

E[qo ‘nJTq(n)] = tr(RaW”“K’“‘), (18) 

Also from (5), with some delay, 

E[r ‘“‘I = rr(R,T’“‘). (19) 

Then, (2), (18) and (19) yield, approximately, 

E[ a,‘“‘] = ~l,‘~‘o+w (20) 

(20) means that the step size given by (2) “tracks” the 
theoretically optimum step size via leaky accumulators, 
thus realizing quasi-optimal adaptive step size control, 
particularly in the early stages of filter convergence. 

Referring to (2) 

E[ q’“‘] z E[q,‘““q’“‘]/ E[ r’“‘] (21) 

and 

E[(a; ‘“‘)‘I s E[(qo’“JTq’“‘)‘]/E[( T’“‘)~], (22) 

where E[(~,‘“~~~‘~J)*], E[qo’“JTqGnL], fl( $n32] and 

E[~ ‘“‘1 are iteratively updated by a set of difference 

equations which can be derived from (3) (4) and (5) (but 
not given here). 

Next, let us solve theoretical MSE after convergence. 



Assume that the filter converges as n +m. Then, from 

C3), 
P 

‘-J = () 

which implies 
m (-)=E[q,‘-“] = E[q’“’ ] = 0 . 

And, for a sufficiently small p, 

,qqo(-JTq(-Jl z (p/2) tr(PJ) T and (23) 

~(qo’“JTq’-J)2] z (p/2)2( tr’(S’-J) 

+ tr(T,,‘mJT’wJ) + tr((s-))Z)~, (24) 

where ~o(“~ = E[@, + yn)2~(nJ~(nJT] and S’“’ = E[(e, + ,,.) 

f (en + vn)u’“Jg(u’n’)r]. 
Also for pr << 1, 
E[r ‘-‘I = tr(R,T’“‘) 7 (25) 

and 

E[(s ‘wJ)2] I (Qr ‘“‘I)’ (26) 

result. (21), (23) and (25) calculate 

E[a, ‘-‘I z ($2) tr(S’-‘)l tr(R,T’“‘) 7 (27) 

while (22), (24) and (26) yield 

E[(a, (-“)‘I z (p/2)’ tr’(S’-‘)(I+ (tr(T,,‘“‘T’-‘) 

+tr((S’=-‘)2))ltr’(S’-J)}/trZ(R~T’-)). (28) 

Next, from (9) and (16), as n + 00, 

V’“’ + VW = W’“,K’-’ +K’“‘W’“’ _ 
- A’“)T’-’ (29) 

holds, where “equivalent” step size ,Jr-‘is given by 

PC (-’ = E[( q’-‘)‘]/E[ q’-)] 

E (p/2) rr(S’-‘){I+ (tr(T,‘-‘T’-‘) 

+ tr((S’-‘)2))l tr2(S’“‘)}/tr(R,T’“‘)~ (30) 

(29) and (30) are combined to solve K’“) and hence 

the residual MSE ,(-). Note that, for a fixed step size 

(= aC ). we simply set aC’n) = 4 and P,‘WJ = 4 . 

Following is the result for some examples of adaptive 
step size tap weight adaptation algorithm. The theoretical 
value of the residual MSE is given by ,(-) +, Y2/(~-&) , 

where 

LMF : f(x) = 2, g(a) = a 

&(p/4)N(1+(WN) tr(R,‘)/( a,‘N)) 

x u,,‘N/tr (R.*) 7 (31) 

SRA : f(x) =x, g(a) = sgn(a) 

~~(p/4)N[1+(Z/N)(rr(R,2)l(a,‘N) 

+(n/2)tr(R,T,)l(a,ZN))]o,zN/tr(R,T,)~ (32) 

and 

SSA : f(x) = sgn(x), g(a) = sgn(a) 

~~(p/4)N(I+(I/N)(rr(R,‘)l(o,“N) 

+(a/2~tr(R,T,)l(~~*N)))~n2N/tr(R,T,)~ (33) 

with T,=(2/n)arcsin(R, no’) 

Note that for the above algorithms the residual MSE ,(-) 

has a finite “floor” which is proportional to d,.2, ,D and 

N in theory. 

IV. EXPERIMENT 

Simulations and theoretical calculations are performed 
for the following three examples with different types of 

tap weight adaptation algorithm, where filter 
convergence with the proposed adaptive step size control 
algorithm is compared to that with a fixed step size. 

-Example #I 

Example #2 

Example #3 

LMF Algorithm 

N=4, h=[.M, ,994, .OI, -.JIT 

AR1 modelled input u,~= 1, 

regression coefficient q =.5 

q*=l (0 dB) 

fixed step size : ue = 2-n 

adaptive step size : p= fi = 24 

Signed Regressor Algorithm (MA) 

N=4, h=[.05, .994, .o1, -.I]’ 

AR1 modelled input O,L= 1, 

regression coefficient n=.75 

u,‘=.Ol (- 20dB) 

fixedstep size : 4 =2” 

adaptive step size : P=,4=24 

Sign-Sign Algorithm (SSA) 
N=8 

h=[.Ol, .811, .05, -.572,-.I,-.05,-.02,- 

White & Gaussian input UC,2= 1, 

a,*=.0001 (-40dB) 

jixed step size : uF = 2-13 

adaptive step size : p=pr=26 

.Ol] T 

Figs. 1 through 3 show results of the experiment for 
Examples #I through #3, respectively. The simulation 
results clearly indicate that the proposed adaptive step 
size control algorithm makes the filter convergence 
considerably faster, and prove its effectiveness for 
different algorithms and various values of filter 
parameters. 

It is also observed that the theoretically calculated 
convergence curves exhibit fairly good agreement with 
those of simulations. Note that in each of the figures 
convergence with theoretically optimum step size is 
plotted for comparison. 

V. CONCLUSION 

A novel adaptive step size control algorithm for adaptive 
filters has been proposed, in which the step size is 
approximated to (or trucks) the theoretically optimum 
value, thus realizing quasi-optimal control. 

The step size at each time instant is calculated as an 
inner product of two vectors divided by a scalar. Those 
vectors and scalar are updated via leaky accumulators. 
Basically, the algorithm can be applied to virtually any 
type of tap weight adaptation algorithm. 



Fig. 1 Convergence of adaptive filters 
(Example #I; LMF, N = 4 ). 
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Fig.2 Convergence of adaptive filters 
(Example #2; SRA, N = 4 J. 
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Fig.3 Convergence of adaptive filters 
(Example #3; SSA, N = 8 ). 

Analysis has yielded a set of difference equations to 
describe the filter convergence in the transient phase, and 
has shown that the residual MSE after convergence, 
explicitly given in a formula, has a finite floor that 
depends on the number of taps, leakage factor, additive 
noise power, ejc. These theoretical results may contribute 
to the practical design of adaptive filters. 

Experiment with some examples has proven 

effectiveness of the proposed algorithm in improving the 
filter convergence rate for a wide range of filter 

parameters. The results of the experiment also exhibit 
good agreement between the theoretically calculated 
convergence and that obtained through simulations. 

The proposed algorithm requires division to calculate 
the step size (see (2)). The following “dividerless” 
approach using another leaky accumulator may be 
suggested for further study. 

Further study will also be required to simplify the 
proposed step size control algorithm for a specific tap 
weight adaptation algorithm. 
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