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ABSTRACT

We propose a new real-valued lapped transform for 2D-
signal and image processing. Lapped transforms are partic-
ularly useful in block-based processing, since their intrinsi-
cally overlapping basis functions reduce or prevent block ar-
tifacts. Our transform is derived from the modulated lapped
transform (MLT), which, as areal-valued and separable trans-
form like the Discrete Cosine Transform, does not allow to
unambiguously identify oriented structures from modulus
spectra. This is in marked contrast to the (complex-valued)
Discrete Fourier Transform (DFT). The new lapped trans-
form is real-valued, and at the same time allows unambigu-
ous detection of spatial orientation. Furthermore, a fast al-
gorithm for this transform exists. As an application exam-
ple, we investigate the transform’s performance in spectral
approaches to image restoration and enhancement in com-
parison to the DFT.

1. INTRODUCTION

Calculation of block or short space spectra from images and
image reconstruction from processed block spectra are stan-
dard operations in many image processing tasks. Examples
are image compression [1] and noise reduction by spectral
amplitude estimation [2, 3]. These methods rely on the abil-
ity of the spectral transform to concentrate signal energy
into only a few coefficients. As shown in [4] for the exam-
ple of image restoration and enhancement, the performance
of block spectra-based algorithms can be considerably im-
proved if perceptually important information, like oriented
lines and edges, can be detected and processed in a spe-
cial manner. In this respect the Discrete Fourier Transform
(DFT) is particularly advantageous since the presence of
local orientation within a block results in concentration of
spectral energy along the line perpendicular to spatial orien-
tation and passing through the origin [4, 5]. The downside,
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however, of the DFT is that in order to avoid spurious high
frequency artifacts, each block must be windowed prior to
the transform. The reconstruction property then requires
overlapping blocks [6], usually by half the block size in each
dimension [2]. Each pixel is hence part of four blocks, re-
sulting in a fourfold increased data volume.

Unlike the DFT, the Discrete Cosine Transform (DCT)
does not require windowing, and hence avoids the necessity
of overlapping blocks and redundancy. Artifacts at block
boundaries may, however, occur. These, in turn, can be
prevented by so-called lapped transforms like the Lapped
Orthogonal Transform (LOT) [7] or the Modulated Lapped
Transform (MLT) [8]. Essentially, these real-valued trans-
forms yield a non-redundant image representation based on
overlapping basis functions, thus making these transforms
particularly attractive for compression [9].

The discussed real-valued transforms do not, however,
allow unambiguous detection of oriented structures from
spectral energy concentration. The reason for this is that
the DCT is derived as the Fourier transform of vertically
and horizontally mirrored blocks. On the one hand, this
avoids the spurious high frequency artifacts of the DFT. On
the other hand, mirrored orientations are generated. Con-
versely, this means that a certain spatial orientation cannot
be distinguished from its mirrored counterpart when look-
ing at spectral energy concentration. A similar relationship
holds for the MLT.

A lapped transform allowing unambiguous detection of
spatial orientation from modulus spectra is the complex-
valued transform in [10]. Like the DFT with half over-
lapping blocks, it also results in a fourfold increased data
volume.

In the following, we derive a new real-valued lapped
transform which permits unambiguous orientation detection.
The central idea is to perform two MLTs with different but
in some sense complementary basis functions, and to com-
bine the resulting spectra. The transform results in a twofold
increased data volume, and is hence “less redundant” than
the DFT and the mentioned complex lapped transform [10].



2. LAPPED DIRECTIONAL TRANSFORM (L.DT)

To derive our new transform — named the Lapped Direc-
tional Transform (LDT) — we start with a 1D MLT, which
decomposes a 1D signal into overlapping blocks of length
2M [8]. The overlap between adjacent blocks is M so that
each sample belongs to two blocks.

Let 2., »r = 0,...,2M — 1 denote the 2M samples
in a block. The M real-valued basis functions are formed
by (co-)sine waves being symmetric around (M — 1)/2 and
anti-symmetric around (334 —1)/2 [8]. These functions are
modulated by a sine-shaped window function with period
4M which is symmetric around the block centre (21 —
1)/2. Hence, there are only M different basis functions
satisfying both symmetry constraints. The transform can
be described by a (M, 2M )-matrix with entries [8]

cos [ﬁ (r—M—I— %)] ~ (M
wfp-28) 3]

k=0,...M—1,r=0,...,2M — 1.
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Note that with this definition, there is a discrepancy by 1/2
between the spectral index k& of my, and the actual fre-
quency k + 1/2 of the cosine. We now construct another
MLT, where we exchange positions of the symmetry and
anti-symmetry constraint in each basis function, i.e. the anti-
symmetry constraint is now positioned at (M — 1)/2, and
the symmetry constraint at (334 — 1)/2. This transform —
denoted MLT' — corresponds to a time-inverted MLT, and
is described by a (M, 2M )-matrix with entries

my, = cos [ﬁ (r—M-I— %)] . (2)

i (=25 (3)]

k=0,...M—1,r=0,...,2M — 1.

When processing images, 2D localised spectra can be ob-
tained by performing either MLT or MLT’ in both direc-
tions. The central idea of our new transform is to compute
both MLT and MLT’, and to obtain new spectra from the
sum and the difference of these (Fig. 1). We will show that
taken together, these spectra allow to distinguish between
mirrored orientations, and hence unambiguous orientation
detection.

For each block of 2M x 2M pixels of an image with
samples x,, there are M x M coefficients denoted y;; for
the MLT and y;; for the MLT'. We combine these to LDT
coefficients a;; by

(Yi-1/2,4-1/2 = y;—1/2,j—1/2)
(yi—l/Z,—j—l/Z‘i'yg_l/zy_j_l/z) (3)
a_j —j
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Note that, compared to (1), we have here shifted the fre-
quency sampling grid by 1/2 in each dimension. The in-
dices 7, j of a;; do hence correspond again to the spatial
frequencies of the sinusoids (see (5)). Moreover, the above
defined local spectrum is symmetric with respect to the ori-
gin rather than to (1/2,1/2). Formally, this spectrum con-
sists of 4M? real coefficients, which due to the symmetry
result in 2M? independent coefficients. In total, this repre-
sentation contains twice as many coefficients as the original
image.
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Figure 1: Block diagram of the LDT and its inverse.
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A closer look at the LDT’s basis functions reveals its
ability to identify orientation. Writing the inner product to
calculate the LDT coefficients as the sum
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which is a modulated cosine wave of 2D frequency (%, j).
A similar relation holds for : > 0, j < 0. These directional
basis functions are shown in Fig. 2 in comparison to their
non-directional counterparts from the MLT and MLT'. Un-
like the MLT and MLT’ basis functions, the 2D LDT basis
functions are not separable into real-valued 1D basis func-
tions. On the other hand, the LDT modulus spectrum clearly



distinguishes between mirrored orientations, which neither
MLT nor MLT' do. The LDT’s non-separability is no se-
rious drawback, since it is calculated from two separable
transforms.

a)

c)

Figure 2: Example 2D MLT and LDT basis functions: a) basis
function for coefficient (3, 2) of the MLT, b) of the MLT’, ¢) LDT
basis function (3.5, 2.5), d) LDT basis function (3.5, —2.5).

The LDT can easily be inverted since both MLT and
MLT’ coefficients can be recovered from the LDT coeffi-
cients as follows:

1

Y = 5( kt1/2,041/2 F Qrg1/2,—1-1/2) (6)
1
Yoo = 5(_ak+1/2,l+1/2 +apq1/2,-i-1/2) (D
In theory, one of these data sets — yy; or y/{c ; — sulffices

for perfect image reconstruction. In practice, however, both
spectra will be processed. In order to reconstruct the pro-
cessed image with respect to the oriented basis functions,
we therefore calculate both the inverse MLT and inverse
MLT', and take the average of these. This is also illustrated
in Fig. 1.

3. APPLICATION TO IMAGE RESTORATION

We have applied the LDT within the algorithm for noise
reduction and enhancement of low dose X-ray images de-
scribed in [4]. The algorithm’s block diagram is depicted
in Fig. 3. The input image is first decomposed into local
spectra, where the DFT was used in [4]. Each spectral co-
efficient is then related to its noise variance by calculating
the (instantaneous) signal to noise ratio (S/N), where in [4]
the noise variance in the spectral domain is obtained from
calibration measurements of the noise power spectrum of
the given imaging system, and stored in the noise model
box. Coefficients with low S/N are then attenuated, with the

relation between attenuation and S/N being captured by a
noise attenuation curve (cf. Fig. 4). In our experience, this
approach — termed spectral amplitude estimation — is par-
ticularly well suited to low dose X-ray images where noise
is coloured [3].
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Figure 3: Overview of noise reduction using spectral amplitude
estimation.

The key feature of the algorithm in [4] is its adaptivity
to local orientation. To this end, each local spectrum is ana-
lyzed by means of an inertia matrix to identify the line along
which spectral energy concentration is strongest. Since the
DFT is used, this line is unambiguously related to an ori-
ented structure in the spatial domain, like lines or edges.

With U?j denoting the noise variance for DFT coefficient
gij» the inertia matrix is given by
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If the block contains a dominant structure the two eigenval-
ues of this matrix differ strongly. The eigenvector belonging
to the smaller eigenvalue determines the line with strongest
energy concentration. In [4], this information is used to
modulate the attenuation depending on the processed coef-
ficient’s position relative to the orientation axis. Assuming
that spectral coefficients along or close to the orientation
axis contribute to perceptually important detail, less attenu-
ation is applied to these for any given S/N. This is depicted
in Fig. 4. In [4], we used the orientation information even
to selectively enhance these coefficients.

The LDT can be used within this approach in the same
manner as the DFT. As the LDT behaves like the DFT with
respect to local orientation, the algorithm’s ability to pre-
serve or even emphasize visually important structures re-
mains untouched.

An example of alow dose X-ray image is given in Fig. 5.
An enlarged portion of this image is shown in Fig. 6 side by
side to its processed version. A comparison between these
reveals that noise was indeed appreciably suppressed, while
the guidewire was visibly enhanced. Qualitative and quanti-
tative comparisons showed that the LDT performs as well as
the DFT within this algorithm. The DFT-based algorithm,
however, was redundant by a factor of four, whereas the
LDT-based algorithm is redundant by a factor of only two.



08 [

_ 45-90 deg -~
06 [~

04

attenuation factor

0.2

0 05 1 15 2 25 3 35 4
sqri(S/N)

Figure 4: Attenuation curves used for noise reduction. The at-
tenuation factor is shown as a function of the ratio of coefficient
magnitude and noise standard deviation (cf. Fig. 3). Depending on
the angle of a coefficient’s position relative to the dominant orien-
tation the attenuation is reduced.

Figure 5: A low dose X-ray image depicting a guidewire within
a patient’s vascular system.

4. CONCLUSION

We have derived a new real-valued transform referred to as
LDT with inherently overlapping basis functions. Unlike
other real-valued standard transforms like the DCT or MLT,
the new transform uses directional basis functions like the
complex-valued DFT, hence providing for an unambiguous
relationship between orientation in the spatial domain and
concentration of energy in the spectral domain. We have
furthermore described an anisotropic spectral magnitude es-
timation algorithm for image restoration where this orienta-
tion property was exploited to improve performance with
respect to perceptually relevant detail. Both DFT-based and
LDT-based versions of this algorithm perform comparably,
with the LDT generating less redundancy than the DFT. Al-
though the LDT’s basis functions are not separable, it is cal-
culated invoking a separable transform, viz. the MLT. Since
fast algorithms exist for the MLT [8], so do fast algorithms
for the LDT.

LDT and DFT differ in the grid on which the frequen-
cies are sampled. Whereas DFT refers to an integer grid, the

a)

Figure 6: Zoomed section of the X-ray image in Fig. 5: a) orig-
inal, b) processed by LDT-based anisotropic spectral magnitude
estimation.

LDT grid is shifted by 1/2 in both directions. This implies
that there is neither a coefficient for O nor for the Nyquist
frequency which makes handling of the data easier.

A more basic question is whether a non-redundant alter-
native to the LDT exists, i.e. a real-valued lapped transform
with fast algorithm, no redundancy, and an unambiguous
representation of orientation. As long as such a transform is
not known, further study of the LDT is worth its effort.
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