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ABSTRACT

A new class of FIR �ltering algorithms and VLSI architec-
tures based on the multirate approach were recently pro-
posed. They not only reduce the computational complexity
in FIR �ltering, but also retain attractive implementation-
related properties such as regularity and multiply-and-accumulate
(MAC) structure. In addition, the multirate feature can
be applied to low-power/high-speed VLSI implementation.
These properties make the multirate FIR �ltering very at-
tractive in many DSP and communication applications. In
this paper, we propose a novel adaptive �lter based on this
new class of multirate FIR �ltering structures. The pro-
posed adaptive �lter inherits the advantages of the multi-
rate structures such as low computational complexity and
low-power/high-speed applications. Moreover, the multi-
rate feature helps to improve the convergence property of
the adaptive �lters.

1. INTRODUCTION

The �nite-impulse response (FIR) �lter is the fundamen-
tal processing element in many digital signal processing
(DSP) and communication systems. Many algorithms have
been studied to reduce the computational complexity of
FIR �ltering. Recently, a new class of fast FIR �ltering
algorithms based on the multirate approach were proposed
[1][2]. It is a multirate parallel �ltering structure with deci-
mation factor equal toM . The input signal at sampling rate
fs is �rst decimated into M interleaved sequences xi(n);
i = 0; 1; 2; � � � ;M�1. After the pre-processing network, the
generated output data streams are fed into the sub-�lters
running in parallel at a low rate of fs=M . The outputs
are then converted back to the �ltering output signal, y(n),
through the post-processing network and up-sampling cir-
cuit. The special cases forM = 2; 3 are depicted in Fig. 1(a)
and (b), respectively.

The advantages of the multirate �ltering structure are
as follows. First, the required multiplication operations per
unit sample time (abbreviated as MPU) decreases as dec-
imation factor, M , increases. This feature is preferable in
reducing the million-instructions-per-second (MIPS) count
in running programmable DSP processors (DSPs). Sec-
ond, in contrast to the overlap-and-add/overlap-and-save
approaches [3], the multirate FIR �ltering is performed only
in the real domain without using FFT/IFFT operations. It
also retains the multiply-and-accumulate (MAC) structure
which is optimized in most programmable DSPs. Moreover,
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Figure 1: Multirate FIR �lters with decimation factor (a)
M=2, (b) M=3.

for hardware implementation, the VLSI structures are more
regular and require fewer intermediate memories compared
with the overlap-based approaches. Third, the multirate
FIR is a parallel processing structure in nature. Hence, it
can be readily applied to high-speed/low-power applications
[4][5].

Due to the vast advantages of the multirate FIR �lter-
ing algorithm and architecture, we are motivated to study
a novel adaptive �ltering scheme based on the multirate
approach. Figure 2 shows our idea. Part (a) is the block
diagram of a conventional LMS-type adaptive �lter, where
error signal e(n) is used to update the coe�cients of the
FIR �lter so as to minimize the mean-squared error func-
tion, E[e2(n)]. In our approach, we replace the transversal
�lter with the multirate FIR �lter. As a result, the new
adaptive �lter inherits the advantages of the multirate FIR
structures such as low computational complexity, regularity,
and low-power/high-speed applications. Also, the multirate
feature can help to improve the convergence properties of
the adaptive �lters. The detailed algorithm and architec-
ture are discussed in the following section.
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Figure 2: (a) Conventional adaptive �lter. (b) The pro-
posed adaptive �lter based on the multirate FIR structure.

2. UPDATING ALGORITHM AND VLSI

ARCHITECTURE

In this section, we derive the updating equations and ar-
chitecture of the proposed multirate adaptive �lter. Math-
ematically, an N -th order LMS adaptive FIR �lter can be
described by the following equations:

y(n) =

N�1X
k=0

wk(n)x(n� k);

e(n) = d(n)� y(n); (1)

wk(n+ 1) = wk(n) + �e(n)x(n� k);

for k = 0; 1; : : : ; N � 1; where x(n) is �lter input signal,
wk(n) is the kth �lter coe�cient, d(n) is the desired re-
sponse, and � is the step size.

Due to the characteristics of the proposed multirate
adaptive �lter, the updating equations in Eq. (1) need to be
modi�ed. First, as can be seen from Fig. 1, we can treat the
central part of the multirate FIR �lter that operates at the
frequency of fs=M as a block-based FIR system. We may
then employ the updating scheme in block LMS (BLMS) [6]
and rewrite Eq. (1) as

wk(n+M) = wk(n) + �

M�1X
m=0

e(n+m)x(n� k �m): (2)

Moreover, in the multirate FIR �ltering scheme, the �lter
weights, wk for 0 � k �M � 1, are decimated and grouped

into M sub-�lters with tap length equals to N 0 4

= N=M
(assume that N is multiple of M .) The ith sub-�lter, Wi,
is composed of wi;j(n), for 0 � j � N 0 � 1. They can be
related to wk(n) as

wi;j(n)
4

= wi+Mj(n) for 0 � i �M�1; and 0 � j � N 0
�1;

and the subscripts i; j are used to denote the jth coe�cient
in the ith decimated sub-�lter. Since Eq. (2) is a block-
based update operated at an M -times lower sampling rate,
it will be convenient to de�ne a new time index l. Single

increment of l corresponds to M increments of the original
index n. Besides, we also de�ne the decimated signals as

em(l)
4

= e(Ml+m) = d(Ml+m)� y(Ml +m);

xi(l)
4

= x(Ml+ i):

By applying above de�nitions and substituting n =Ml into
Eq. (2), we can derive the new weight updating equation for
wi;j(n) as

wi+Mj(Ml+M)

= wn+Mj(Ml) + �

M�1X
m=0

e(Ml+m)x(Ml� i�Mj +m)

= wn+Mj(Ml) + �

M�1X
m=0

em(l)xm�i(l� j): (3)

Furthermore, by using the fact of xm�i(l) = xm�i+M(l�1)
for m� i < 0, the new updating equation of the proposed
multirate adaptive �lter can be rewritten as

wi;j(l + 1) = wi;j(l) + �

"
i�1X
m=0

em(l)xm�i+M (l� j � 1)

+

M�1X
m=i

em(l)xm�i(l� j)

#

4

= wi;j(l) + �ri;j (4)

for 0 � i � M � 1 and 0 � j � N 0. ri;j is de�ned as the
estimated gradient of jth weight of the ith sub-�lter.

A direct implementation of Eq. (4) is depicted in Fig. 3.
It shows a regular realization of the proposed new updat-
ing algorithm with example of M = 3. By substituting
Fig. 3 and Fig. 1(b) into Fig. 2(b), we can have the overall
structure (including pre-, post-processing networks, multi-
rate �ltering block, and the weight updating block) of the
proposed adaptive �lter in Fig 4. As can be shown in Fig. 3
and Fig. 4, both weight updating and multirate �ltering
block can be implemented in a very regular way. Besides,
we can also show that the updating equation in (4) can be
applied for other choices of M and N .

3. COMPLEXITY ANALYSIS AND

COMPARISON

Table 1 lists the required computational complexity of the
�ltering operation, error calculation, and weight updating
among the standard LMS and multirate adaptive �lters
withM = 2 andM = 3 1. Note that both the MPU and ad-
dition operations per unit sample (abbreviated as APU) are
about the same in error calculation and weight updating op-
eration for all approaches. The computational complexity
saving comes from the multirate �ltering operations. The
overall computational complexity of the multirate adaptive
algorithm is less than the one of conventional LMS. As M

1
M = 2 and 3 are the most applied con�guration in practical

implementation. We may also regard the standard LMS as a
special case of multirate adaptive �lter with M = 1.
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Figure 3: Direct implementation of weight updating block
(WUB) with M = 3.

P
re

-P
ro

ce
ss

in
g 

N
et

w
or

k

x

D

w2,0(n)

+

D

x

+

w2,1(n)

D

x

+

w2,2(n)

D

x

+

w2,N'-1(n)

x

D

w1,0(n)

+

D

x

+

w1,1(n)

D

x

+

w1,2(n)

D

x

+

w1,N'-1(n)

x

D

w0,0(n)

+

D

x

+

w0,1(n)

D

x

+

w0,2(n)

D

x

+

w0,N'-1(n)

+ + + +

x

D

+

D

x

+

D

x

+

D

x

+

+ + + +

x

D

+

D

x

+

D

x

+

D

x

+

+ + + +

x

D

+

D

x

+

D

x

+

D

x

+

0

0

0

0

0

0
W

0
+W

1
+W

2

W1+W 2

W
0
+W

1

W
2

W
1

W
0

Weight Update Block

y0(n)

y1(n)

y2(n)

+
+

+

w
0

,0

w
1

,0

w
2

,0

w
0

,1

w
1

,1

w
2

,1

w
0

,2

w
1

,2

w
2

,2

w
0

,N
'-1

w
1

,N
'-1

w
2

,N
'-1

- - -
e0(n)

e
1
(n)

e2(n)

d0(n)

d1(n)
d2(n)

x2(n)

x
1
(n)

x
0
(n)

P
os

t-
P

ro
ce

ss
in

g 
N

et
w

or
k

Figure 4: The overall VLSI structure of the multirate adap-
tive �lter with decimation factor of M = 3.

Standard LMS
(M=1)

Multirate approach
(M=2)

Multirate approach
(M=3)

MPU APU MPU APU MPU APU
Filtering N N-1 0.75 N N +0.5 0.67 N N +1.33

Error calculation --- 1 --- 1 --- 1

Weight updating N N N N N N
Total 2N 2N 1.75N 2N +1.5 1.67N 2N +2.33

Supply voltage
(V’ dd)

3V 2.04V 1.70V

Power
consumption (P)

P0=CeffVddfs 0.41P0 0.27P0

Table 1: The comparison of computational complexity and
power for standard LMS and multirate adaptive �lters.

increases, the saving is more signi�cant. In addition, the
proposed approach still retains the MAC operations, which
is preferable in programmable DSP implementation.

Moreover, by following the arguments in [5], we know
that the multirate system is very suitable for low-power/high-
speed applications. It can be shown that the lowest possi-
ble supply voltage V 0dd for a device running at an M -times
slower clock rate can be approximated by

V 0dd
(V 0dd � Vt)2

=M
Vdd

(Vdd � Vt)2
; (5)

where Vt is the threshold voltage of the device. Assume the
Vdd = 3V and Vt = 0:7V in the original system (standard
LMS). Provided that the capacitance due to the multipli-
ers is dominant in the circuit and is roughly proportional
to the number of multipliers, we can estimate the power
consumption of multirate adaptive �lter as

P =
�
MPUtotal �M

2N

��
V 0dd
Vdd

�2 �
1

M

�
P0; (6)

where P0 denotes the estimated power consumption of the
standard LMS adaptive �lter. The required supply voltage
and power consumption for multirate approaches withM =
2; 3 are listed in the last two rows of Table 1, where Ceff

is the e�ective capacitance of a single multiplier. It shows
that the power consumption is greatly reduced compared
with the standard LMS, and the saving is more signi�cant
as M increases.

4. APPLICATION TO DELAYED-LMS

In the VLSI implementation of Eq. (1), the long feedback
path of the error signal imposes a critical limitation on its
high-speed implementation. In applications which require
high sampling rate or large number of �lter taps, the direct
implementation may not be applicable. To overcome the
aforementioned speed constraint, the delayed LMS (DLMS)
is usually adopted [7]. It uses a delayed estimation error to
update the �lter weights, i.e., the weight updating equation
in Eq. (1) becomes

wk(n+ 1) = wk(n) + �e(u �D)x(u� k �D): (7)

The extra D can help to relax speed constraint within the
feedback path of e(n). Hence, the transversal �lter can be
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Figure 5: The learning curves of the conventional DLMS
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N = 18 and eigenvalue-spread �(R) = 6:08.)
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Figure 6: The learning curves of the conventional DLMS
and multirate adaptive �lters with M = 2; 3 (tap length
N = 18 and eigenvalue-spread �(R) = 21:71:)

implemented as a D-stage pipelined FIR �lter so as to han-
dle the high-sampling input signal. One major disadvantage
of the DLMS algorithm is its slow convergence rate [7].
That is, the optimum step size decreases as D increases, so
does the convergence rate.

In the proposed adaptive �lter, the tap length is only
N 0 = N=M . As a result, for fully-pipelined designs [8][9],
the delay stage is reduced from N of the standard DLMS
architecture to N 0, which leads to improvement in the con-
vergence rate.

To verify our observations, we compare the ensemble-
averaged error between the conventional DLMS and the
proposed multirate adaptive �lter in the application of chan-
nel equalization [10, Chap.9]. Figure 5 and 6 show the
learning curves for these two approaches in two di�erent
channels, where the eigenvalue spread, �(R), of the received
signal are 6.08 and 21.71, respectively. Based on the results

presented in Fig. 5 and Fig. 6, we can make the following
observations:

� The conventional DLMS behaves worst in terms of
convergence rate and the steady state mean-squared
error.

� The multirate adaptive �lters withM = 2 andM = 3
have smoother convergence curves (less 
uctuations.)
The estimated gradient is averaged over M sample
periods. Hence, the gradient estimation is more ac-
curate.

� The multirate approach performs better in both con-
vergence rate and steady state mean-squared error as
M increases. It is due to the fact that the delay stage
D is smaller than the conventional implementation.
The phenomenon becomes more clear in more severe
environment (larger eigenvalue spread.)

5. CONCLUSIONS

In this paper, a new adaptive structure based on the mul-
tirate �lter is proposed. By virtue of the advantages of
multirate FIR �ltering algorithm, the proposed scheme can
reduce the required computational complexity and reserve
the MAC structure. It also improves the convergence rate
and steady state error in running delayed LMS.
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