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ABSTRACT

In this pap er, we propose a sinple set theoretic blind de-
convol ution schene based on a recently devel oped convex
projectiontechnm que called Hybrid Steepest Descent Met h-
ods. The scheme 1is essentiall ymotivated by Kundur and
Hatzinakos’s 1dea that mnimzes a certain cost function
uni formy reflecting all a prioriinformtion such that (i)
nomnegativity of the true image and (ii)supp ort sizeof the
original object.

The nost remark able feature of the proposed schene is
that the proposed one can utilizeeach a prioriinformation
separatel yfromother ones, where sone partialinfornations
are treated in a set theoretic sense while the others are
incorporated ina cost function to be mm mzed.

1. INTRODUCTI ON

In man y image processing applications, the degradation of
an inage can be represented as the convol ution of the true
image wth a blurring function known as a point-spread-
function (PSF). The bl urred image can be no deled as

g(z,y) = h(z,y) * f(z,y) + n(z,y), (1

vhere (z,y): discretepixel coordinates of the imge frane,

g(z,y) : llurredimge, f(z,y): trueimge , h(z,y): point
spread function (FSF), n(z,y): additive noise, * : discrete
two-dimensional (2-I) linear convol ution operator.

Although the effect of PSF is usually assuned to be
explicitl yknown in classicalimage restoration techni ques
to recover the true image f(z,y),itiswellknown that ac-
curate neasurenen t of the degradation is often difficult,
costly dangerous, or physicallyinp ossiblefor exanple in
applications such as astronomcal speckleinaging and cer-
tainnedical inaging etc. This situationmotivated a notion
of Blind ¢ mage restomtionthat estimate both the true im
age and PSF simml taneously.

%A seen in broad reviews on the blind decon vol ution
problenjl, 2], nunerous strategieshave been proposed to
tackle this problem because of itsgreat inp ortance in ap-
plicationas wellas in theoretical i nterest.

Inparticul ar,recentl y Kindur and Hatzi nak os reported
that the blind image decon vol ution problem issuccessfully
resol ed by constructing a restorationfilterwth a littlen
prioritinformtion such that (i) nomnegativity of the true
image and (ii)support size of the original object, vhere
the true inage is estimated by mnimzing a certain cost

function wni formhy reflecting the all a prioréinformtion| 3] .
b wever, since each a prioriinformation is a interpreta-
tion of absolutely required different physical constraints,
separate and flexible use after examming the role of each
information would be nore desirable to the problem For
exanpl e, onl y normegativity of the fil teredimage isrequired
to be satisfied over the supp ort while the conplete a prior:
information on the signal value isknown as a background

grey-lewl outside the support. This inplies that the set
theoreticstrategy[4]isnatural to utilizethe a prioriinfor-
mation over the support while optimzation i1ssuitable to
do outside the supp ort.

In this pap er, notivated by the idea shown by Km-
dur and Hhtzinak os, we propose a sinple blind decon vol u-
tion schene based on a recently devel oped convex projec-
tiontechni que called Hybrid Steepest IEsc ent Mtho ds[5,6].
The nost remark able feature of the prop osed schene 1sthat
the proposed one can utilizeeach a prioriinformation sep-
arately from other ones, where sone partial infornations
are treated in a set theoreticsense vhile the others are in-
corporated in a cost function to be mni mzed.

In addition, sone variants of the proposed metho d can
stilbe applied to the blind decon vol utionprobl ens inwhich
an inconsistent set of @ prior¢informations isinp osed. In
such a case, these netho ds lead to the uni que optimal FR
restorationfil ter anong all IR fil tersthat attainthe least
sum of squared distances to all sets defined by each infor-
nation.

A couple of sinple nunerical exanples are presented to
denonstrate the performance of the proposed blind decon
vol ution schene 1nnoisy case as wellas in noisel esscase.

2. REVI EWOF A NONPARAMETRI CBLI ND
DECONVOLUTI ONs CHEME

In this section, we present a brief review of the idea of
a nonparanetric blind decon vol ution schene proposed by
Kindur and Fhtzinak os[3].

Asune  that the follsing a prioriinformation on the
imaging process, the true image, and the FSE

1. The degradation of the true image ismo deled by (1)
2. The objectisimaged such that itisentirel yencom
passed by the observed frane.

3. The true image is normegative, and itssupport is
kno v a priorithe supp ort isdefined tobe the small-
est rectangl e enconpassing the object.



4. The background of the image i suni fornly grey, bl adk,
or white.

5. FourierTransformtionof PSF H(wi,w>) satisfyhe
follw ng conditionH(0,0)=1.

6. The 1werseof the PSF existsand both the PSF and

itsiwerseare absol utel sumabl e.

Most of theseare commonly assuned innunerous deter-
mni stichblind deconvol uti onprobl ens. The validiyt and
broad avail abily tof theseassunptions are brieflydi scussed
in[3].

The essertialstrategyf Kundur and Hatzi nalos’schene
isbestapproxi matingtherol eof FIR restoratiofil ter{u(z, y)}
to that of the 1werseof the PSF over the support by ap-
plying part of the above a priori informtion. In other
words, the consistencyof the obtainedestimte f(z,y) :=
u(z,y) * g(z,y) of the trueimge with thesea priori infor-
mations 1sadapti el yupdated by m ni m zi nga convex cost
function:

W o= Y Peadfes)
(#,4)€Dsup
+ Z [f(iﬁ,y)_LB:ﬁ
(%, YEDgup

+v Z u(x,y)—l

Y(z, 1)
where

{0, iff>0
Cl(f)'_{ 1, iff<o,

Dsup isthesetof al Ipi xel s nsi det he regi onof support, Dsup
isthe set of allpi xel soutsidethe regionof support, Lp is
the background grey-1eel val ue(ifhe background ishl ad,
then Lp = 0 ), and v isimraluced as a sort of penal ty.
Obviousl y the first termin (2) neasures the consistency
wi th the above 3rd assunption, the second termneasures
one with the 4th assunption, the thirdterm reflect the
5th and 6th assunptions. The thirdtermisadditionally
imraduced in[3]toconstrainthe paraneter {u(z,y)} from
the triviahll-zersol uti onvhen the background is bl adk
(i.e.Lp=0).

Fig.1illustratdshe princi palstrategyof the blindde-
convol utiomschene proposedin[3] where

N f(xay)a 1ff:(xay)20a (xay)EDSHP
fNL(x,y):: 0, iff(x,y)<0, (%,y)EDsup
LBa lf(CE,y) S Dsup

It shoul d be noted that,inthe probl em only nonneg-
ativiy of the fil teredinage is absol utel yrequiredto be
satisfiedover the support while the conplete a prior: in-
formationisknown as a background grey-1esl outsidethe
support. b wever, t he nonnegati vi § f(x,y) over the sup-
portisnot guaranteedingeneral by mnimzing J of (2).In
addi ti on,t he final conp ensati onby operatingfunctionfwyy,
to the part of i mage f(x,y) over the support seens debat-
abl e becauseitconflict wi th the princi palstrategyof best
approxi matingthe rol eof FIR fil terover the supporttothat
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Figure 1: Kandur
lution

and Hatzinakos’ sBlindinage deconvo-

of theimerseof the PSF. (h the other hand, the operation
to the remai ni ng part of i mage f(z,y) outsidethe support
ispersuasi® due tothe known background grey-1lesl.

Thi s situationnpliesthat the set theoreti strategy[ 4]
woul d be nore natural to utilizdéhe a priori i nfornation
over the support while the strategyof m ni mzingthe dis-
tance between f(z,y) and background inage issuitableto
do outsidethe support.

Remark 2.1 Alternatievstrai ghforwardset-theoretis¢rat-
egy woul d be utilizinget-theoreticaltke a priori infor-
mations outsidethe support as wellas itsinside.tb wever
appl yi ngthe well - knen al gorithns forexanple POCS, in

[ 7]f orconvex feasibily probl ens woul dfailtofind the fea-
siblesol utiortosatisfullrequirenentsingeneral unl essa
restoratiofl R fil terhas sufficienl yl argesize,which wll
be shown through nunerical exanpl es inSectionb5.

3. HYBHED STERIEI IECENT MEOI3

Hybrid Steepest Descent Methods[ 5, 6] was recent] ydevel -
oped to tackl e a cl assof signal processingprobl ens to be
sol ed bothinset theoreti @s wellas i nopti mal senses.

In thissection,we brieflyreview Hbrid Steepest I¢-
scent Mtho ds tothe fol lw ng opti mzationprobl em
(B) (Convex optim zatiomwver generalizedonvexfeasible
set):

Let H be a real Hlbert space wi th inner product (-, - )
and induced norm || -||. Supposethat C; (1 =1,2,...,m)
and K arenonenpt y closedconvex setsand the functiond :
H — Risdefined by ¥ z) ::Z:’;l wid(x,Ci)2,Z:.Z1 w; =
1and w; >0 fore=1,...,m. let

Ke:={ue K| N u)=inf® K)} #0

and

(Ci if[)Ci#0,
1=l 1;1
Ke if() Ci=0.
e =1
Then, fora giwen contimous convex function® : H — R
the probl emi s
Mnimze © over G.

We callK a control set and G a gener dlizel cowex feasible
set. 9



Remark 3.1 Note that the problem (P1) is not sdvale
by standard convex projection techmques[7] or norlinear
programming  techm ques[8, 9].

A mppng T : H — H is cdled nonexpansiwe if
|IT(z)—=T(y)|| < ||lz—y|l for dlz,y € H. A fixed poi u of
amping T :H — Hisapont z € H such that T(z) = z;
the set of all fixed points of T isclosed convex and denoted
by Fiz(T). For any norempt y closed convex set C C H,
the mapping that assigns every point in ‘H to its wique
rearest point in Ciscalled the netri ¢projecti omto C
and isdenoted by Po. It iseasy to see that Fia(Po)=C
and to deduce that P is nonexparsiv e.

Defini tio%. 2 Let S be a subset of a Hilbert space H, and
leta function® : H — R U {oo} be twie differentiabl eon
some open set U D S. Then ©" : U — B(H) issaidto be
uni for nlys t rongl posi t bvand uni f or 1l pounded
(or, briefly,®" is USPIB) over S if©"(z) issel f-adjoint
forallz € S, and there existscalars M > m > 0 such that

m||v||2 <A{O"(2)v,v) < M||v||2 forallz € S and v € H.

Exanpl e3.3 Suppose thatb € H and A : ' H — H is
a stwngly positivebounde d linar operator, i.e. (Av, x) >
ol|z||? for sone « > 0 and all ¢ € H. Define a quadratic
function® : H — R by

Q u) ::;(Au, u) — (b,u) forallu € H.

Then ©" : H — B(H) satisfiesthe condition ISPLB  over
H.

Fact3.4 (Hpbrid Steepest [kscent Method (I)) Suppose
that T; : H— H (i=1,...,N) are nonexpansie mappi ngs
wi thF =L, Fiz(T;) #0 and

F = FioTy--T)=FidTiTy - TT5)

R FZ (l(TN_lTN_Q . TlTN) # (Z),

whi chisautonnticallyatisfiefbr firnl ynonexpansi e nnp-
pi ngs( noregeneral ] forat twct i ngnonexp ansi ve mappi ngs )
Ti’swithF £0. Let A := fil co(T:(H)) and I eta func-
tiom® : H — RU{ oo} be twi cedi fferehi abl on sone open
setU D A. Supposethat®” : U — B(H) satisfiethe con-
di ti ot/SPUB over A. Supposethat(A,)n>1 isa sequence
of paraneterd n[0,1] thatsatisfies

(Bl) lim A, =0,

n—-+4 oo

(B2) > An= oo,

(B3) > A = Angn| < +o0.
n>1

Then foran arbi trarifized p wi thO < p < 2/M and
any poiit uo € H, thesequence(un)n>o generatedy

Ung = Tnmd g (un)
—Angt 110" (Tin moa )41 (un))

convergestot heuni queni ni mi zeru™ of thet hefuncti of®
over F'.

The singest exanple of obliviows sequences

(3) m y be Ap ::ifor n=12,....
When © is given as a quadratic function in Exangle

3.3, the podem (P1) issdved by the following scheme.

(An) satisfying

Corollard. 5 Let Ky #0, o« € (0,3/2] and p € (0,2/]|4])).
Assune that()\n)nzl isasequenceofparanetersatisfying
(3)in[0,1] (forN =1). Then forany poitt ug € H, the
sequencduy)n>o generatedy

Una 1=Anq pb

+ (I = Anp pA) {CI/PK (i wiPcl(un)> +(1- a)un}

=1
comvergesstrongl ¥otheuni queni ni ni zerof © over K.

Renark 3. 6MNte that all iterative algorithra introduced
here are possibe to empo y any point in ‘H as its start-
ing point, vhic h inplies that all algorithm to find som
appro ximate solutiors, for example FOCS[7] and other al-
gorithra in [8 9], can be wed as a prepro cessing of Hy-
brid Steep est Descent Metho d SutaHe prepro cessing leads
to great inpro veren t of the convergence speed of Hbrid
Steep est I#scen t Mtho d.

4. PROPOSED BIND DECONV OLUTI ON
SCHEME

A remark ed in Section 2, certain mxture of set theoretic
treatmen t as well as optimzation isdesired to sol ve the non
parametric  Hind decon volution probdem In this section, we
prop ose a sinple set theoretic scheme to demorstrate how
Hybrid Steepest Itscent Mtho dcan be applied to the Hind
decon volution proHem

DRuote by {u(z,y) 5210_71;.?72_1 or u € RM*M2 the im
pulse respomse of a 2D HR restoration filter to be appro x
imated to the inverse of FSE

Dfine  a collection of closed half spaces ina Fxlid space
RNl X Ng by

Ciia, y={u € B | (g5 u)(a,y) > 0},

for every pxel (z,y) € Deup. @ viowly, ﬂ(r, YD .u, Ci(z, y
is the set of all HR filters that output mnommegativ e values

over the supp ort D, up
Dfe  also a hyperdane in RV *V2 by

N;—1Ngo—1
= {uem o 3w =1 .
x=0 y=0

The set Cz 1sinp osed due to the assumptions 5 and 6 in
section 2. Then, the pro jectioms onto these sets are trivially
given as follos. Mo jectios onto Cy(, 5 and Co are easily

conpted by

(9o w)
Pia, ﬁl(u) =U = g 5 B C1(<g.ry’u>)g.rya
Ty
and
Py(u) ::u+m1,

1112



where g, = (g(=,9),9(5 y=1),... ,9(5 y—=No+1),... ,g(z—
Ni4+1l,y—No+1)) and 1:=(1,1,... , 1) € R¥1*Y2 ghere
t denotes the transposition.
Our cost function © : RM*¥2 . Rissimply defined as
a quadratic function

Qu)= > [f(zy)-Lsl,

(%9 )EDgup

S
L PR LTI LLL T2
(AR

vhere we can assune by Exanple 3.3 that © satisfies US-

o 9 e g e et A a9 o A
. . . . . o ST AFF TR TR T FF
PUS everybere in2 N imalwst practicalsivwiion(3). S s
. . . . e R N N ey, LS TN RS
It isobvious that, for consistent case i.e. AT ET7% '..,.::, LIALLRTIA T I '*‘:"'#"5.
. 77
. 2 L7
= = — "~ L7
C: ﬂ Ci(g y)NCo # 0, Fact 3.4with p: Trace(o7) Lz s /
(mvy)eDsup LFF PS4
- 77
1 Y. : IS LTS
An =2 and {1} :={Piay) }(my)eDsu, Y {2} can realize i"”:"’:”’:’:":'?:':ﬁ‘:"f:"::
. . . S L
a sinple set theoreticschene to find the uni que mnimzer %:.:::.:::.'.’i:.i#;:&::.’g::i
of © over C. : i : i
(c) Blurredimage (noiseless case) (d) Blurredimage (noisy case)
LIAZAZLAIF AT AT LTST LI AT AIAZF I AFAT AT
5. NUMERICAL EXAMPLES .:.:.::.:.:..:.:..:.:..:.:..: AT TZZS '::',:.:..:.:..:.:..:.:i::..:g:.:,:.::.:%
A Y it Ve Ty L Y i W Y Y Y o Vet ¥ S
e e N L e A Y Y o A 3 o ¥
. e, AT N a8 o 8 % S Y Y a2 oo
Though the follsing exanples are only the cases vhere the L Wig}gﬁ;ﬁ%&%ﬁ
condition C # ) issatisfied, we can apply Corollary3.5,in W‘m
siml ar ways, to the inconsistent cases as well. e Y 2

XTI
L7 LAY LTSI AT
S e N S S
e e e s
A ..i.'....l........l..

Supp ose that (i)the sizeof the imge to be restored
is 30 x 30, (ii)the support size of the original object is
8 x 8, (iiikhe Z-transformof FSF issum 9f allnu)no.nilals (6) Restored image by POCS (f) Restored image by POCS
{h(m,n)z1" 23 Jo<m<s,0<n<s of Taylor seriesexpansion of (noiseless case) (noisy case)

%(1 — 0.5z1)_1(1 — 0.522)_1, (1v) the background grey-1evwl
is Lp = 0, (v) For noisy case, noise is added at 40 dB

T 0 o 2 Y L v S %
L A Y Y v 2 0 (o ¥ o ¥
e S e e

.. S o ........
Z ....’~ LT A '...
S e o e

Burred image power AT AL LT A D Y e e .

BNR, vhere  BNR = 1010og;, S : LA | [ R e

nol se varl ance S S "' e W’:”%’l/’!&.\;"m

and (vi)the sizeof the FIR restorationfilteris5 x 5 i.e. Z N "#’-'.~.""/~5~§O~ V:#.:#:
L Ky

(Nl,NQ) = (5, 5)

The exanples shown inHg. 2 suggest that the proposed % 15
N L7
: S S e
schene based on Fact 3.4 outperforms PSS inall cases, N S S S e
B S St

but itsperformance seens stillstrongly affected by addi-
tive noise. This situationshould be impro ved by imp osing (0) Restoredimageby Hybrid Steepest  (h) Restored image by Hybrid Steepest
addi tional a prior: information such as the notion of Total Descent Method - (noiseless case) Descent Method - (noisy case)

vartation] 10],which will be presented el sevhere.
K gure 2: Hind Tkcon volutionby Hbrid Steepest [kscent
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