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ABSTRACT

Speech production variations due to perceptually induced
stress contribute signi�cantly to reduced speech processing
performance. One approach that can improve the robustness
of speech processing (e.g., recognition) algorithms against
stress is to formulate an objective classi�cation of speaker
stress based upon the acoustic speech signal. In this pa-
per, an overview of recent methods for stress classi�cation
is presented. First, we review traditional pitch-based meth-
ods for stress detection and classi�cation. Second, neural
network based stress classi�ers with cepstral-based features,
as well as wavelet-based classi�cation algorithms are consid-
ered. The e�ect of stress on linear speech features is dis-
cussed, followed by the application of linear features and
the Teager Energy Operator (TEO) based nonlinear fea-
tures for e�ective stress classi�cation. A new evaluation for
stress classi�cation and assessment is presented using a crit-
ical band frequency partition based TEO feature and the
combination of several linear features. Results using Nato
databases of actual speech under stress are presented. Fi-
nally, we discuss issues relating to stress classi�cation across
known and unknown speakers and suggest areas for further
research.

1. INTRODUCTION

The problem of stress classi�cation is to di�erentiate speech
utterances spoken under stressful conditions from those spo-
ken under neutral conditions. Examples of stressful condi-
tions include high workload stress, emergency phone calls,
voice communications between aircraft pilots and ground
controllers, multi-tasking, fatigue, physical environmental
factors (G-force), and emotional moods such as anger, fear,
etc. The variations in speech production due to stress can be
substantial and therefore have a considerable impact on the
performance of speech processing applications like recogni-
tion [5]. There have been a number of studies which fo-
cus on the variability e�ects of stress on speech produc-
tion. For example, the Lombard e�ect on speech produc-
tion and on speech recognition performance has been inves-
tigated in [9, 4, 10, 16]. Since aircraft ight emergencies
often produce high stress conditions, pilot-controller voice
communications have therefore been of interest in several
studies [18, 23]. The e�ects of emotion-induced stress on
speech production have also been considered [20].
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These studies have shown that speech variability due to
stress is a challenging research problem, and that traditional
techniques generally fall far short of improving the robust-
ness of speech processing performance under stress. For
speech recognizers, a typical approach to improve recogni-
tion robustness under adverse conditions (e.g., varying com-
munication channels, handset di�erences) is re-training ref-
erence models (i.e., train-test in matched conditions). A
similar method, called multi-style training [13], has been
used to improve speech recognition under stress, but at the
expense of requiring the user to produce speech across a
simulated range of stress styles. In a separate study, it
was shown that multi-style training only works in speaker-
dependent scenarios and that performance actually degrades
below neutral training when applied in a speaker indepen-
dent application [21]. The reason is that stressful conditions
are too diverse to be represented by limited training data,
and that speakers can at times use a non-uniform set of
speech production adjustments to convey their stress state.
It is suggested that algorithms which are capable of classi-
fying stress could be used to monitor speaker state, improve
the naturalness of speech coding and synthesis algorithms,
or increase the robustness of speech recognizers.

While the impact of stress on speech recognition as well
as methods of improving recognition performance have been
considered [4, 5, 6, 9, 13, 18], there have been limited pub-
lished studies in the related problem of stress classi�ca-
tion. Many traditional methods use pitch-related speech
features to detect stress [2, 14, 16]. One previous study
employed neural networks to classify stressed speech using
Mel-cepstral based parameters [7, 21]. Sarikaya et al. used
a wavelet-based method [17] and another study considered
a nonlinear feature, where the shape of a pitch normalized
TEO pro�le was used [1]. In our recent studies [23, 24, 26],
we proposed several new nonlinear TEO processing based
speech features which are e�ective for stress classi�cation.
Also, motivated by the analysis study and results in [3], we
investigated �ve linear classi�cation features [25].

The goal of this paper is to provide a useful overview of
di�erent methods of stress classi�cation and to present new
results from recent evaluations. Traditional pitch-related
methods, neural network based classi�ers, a wavelet-based
approach, and techniques using nonlinear TEO processing
and linear speech based features are discussed in the follow-
ing sections. Also, new results for stress classi�cation and
assessment using a combinational linear feature and TEO-
based features are presented. We conclude this paper with
a brief discussion of issues related to e�ective stress classi�-
cation.



2. STRESS CLASSIFICATION TECHNIQUES

2.1. Traditional Methods

Some early approaches employed voice stress excitation mi-
crotremors in an e�ort to determine a reliable measure for
detecting the stress a speaker may exhibit when speaking a
lie. It was believed that a physiological microtremor [14, 2]
exists, which is associated with the excitation muscles dur-
ing speech production. A physiological tremor is described
as a low amplitude oscillation of the reex mechanism that
controls the length and tension of a stretched muscle, and
has a frequency between 8 and 12 Hz. It is assumed that as
speaker stress increases, the amplitude of the microtremor
decreases; and this microtremor variations can be detected
through changes in the fundamental frequency of voice.
Based on this assumption, some commercial computerized
voice stress analyzers were proposed, although their reliabil-
ity and claims of success have always been controversial [2].
In spite of this controversy, such excitation related analysis
could be bene�cial in voice stress detection in monitoring
emergency voice communication applications. In another
study pitch- and spectral-based analysis was considered for
stress detection [16] in laboratory and real stressful condi-
tions. The features used in that study included fundamental
frequency, microprosodic variation index, spectral-based in-
dicators from a cumulative histogram of sound level and
from statistical analyses of formant frequencies, and dis-
tances of formants from the center of the �rst three formants.
Evaluation results showed that a microprosodic variation in-
dex is e�ective in detecting mild stress while the fundamen-
tal frequency itself is more e�cient for severe stress. Also,
spectral-related features were useful although not as e�ec-
tive as pitch-related features.

2.2. Neural Network Stress Classi�ers

Methods based on neural networks and an array of features
have been employed by Womack and Hansen for stress clas-
si�cation [7, 21]. Features investigated with neural network
classi�ers included estimated vocal tract area pro�les, acous-
tic tube area coe�cients, and Mel-cepstral based parame-
ters which consist of Mel-cepstral (MFCC), delta MFCC,
delta-delta-MFCC, and a new feature based on the auto-
correlation of the MFCCs (AC-mel). Stress classi�cation
performance of these features were determined using sepa-
rability distance metrics and neural network classi�ers. It
was shown that stress classi�cation performance varied sig-
ni�cantly depending on the vocabulary size and speaker
population. However, MFCC and AC-mel performed bet-
ter than delta-MFCC and delta-delta-MFCC for vocabulary
dependent tests. A later study showed that by using tar-
get driven features and context dependent phoneme based
neural networks, stress classi�cation performance could be
measurably improved. Furthermore, the authors extended
their work by combining algorithms for stress classi�cation
and speech recognition together. An N-dimensional Hidden
Markov Model (HMM) framework was used for this purpose.
The evaluations proved that stress classi�cation can help in
improving speech recognition performance [22].

2.3. Wavelet-Based Stress Classi�cation

One recently reported study [17] used a set of features based
on wavelet analysis, or equivalently multirate subband anal-
ysis for stress classi�cation. The wavelet analysis can be

useful for this task because it can (1) provide a good rep-
resentation of local spectral variations; (2) be adjusted to
account for the human auditory property by using percep-
tual division of the frequency axis; and (3) achieve better
frequency localization than short-time Fourier transform by
choosing �lters with maximum vanishing moments. Scale
energy (SE) of the subsignals for each subband, autocorre-
lation SE (ACSE), subband based cepstral coe�cients (SC),
and autocorrelation SC (ACSC) were used as features with
a neural network classi�er. It was shown that these wavelet
based features are better than MFCC-based features, espe-
cially the SC feature, for stress classi�cation.
After reviewing stress classi�cation techniques done by

other researchers, we present our work on stress classi�cation
in the following two sections.

3. LINEAR SPEECH FEATURES

Based on a previous study which considered analysis of
speech under stress for recognition [3], �ve linear speech
features were selected for stress classi�cation from �ve do-
mains including fundamental frequency, glottal source infor-
mation, duration, intensity and vocal tract spectral struc-
ture (formant centers and formant bandwidths) which have
been shown to be statistically separable between neutral and
stressed speech. We extracted all �ve features from vowel
sections of speech so that they can be compared under the
same scenario. The �ve features used were: frame-based fun-
damental frequency (pitch), glottal spectral slope, duration
of the vowel in msec, mean square value of the vowel as the
intensity, and deviations of the �rst two formant locations
(frame-based) from their typical averages representing the
vocal track spectral structure [25]. A Bayesian Hypothesis
testing approach was employed for classi�cation [25]. Eval-
uations were based on speech from the SUSAS database [8],
which focused on pairwise classi�cation of neutral versus an-
gry, loud, and Lombard speech. For each feature, di�erent
vector lengths (1, 5, and 10) were evaluated (for fundamental
frequency and formant locations, the value of vector length
reects numbers of consecutive frames, while for the other
features, it represents the number of vowel tokens). It is
shown [25] that fundamental frequency is the best feature
for stress classi�cation among the �ve features (when using
a vector length of 10, classi�cation accuracy was in the fol-
lowing ranges; fundamental frequency: 79{93%, intensity:
64{82%, glottal slope: 64{82%, duration: 54{64%, formant
locations: 41{61%). Also, the performance varied across
di�erent stress styles, with Lombard typically lower in clas-
si�cation accuracy.

3.1. Combinational Linear Feature

Motivated by classi�cation results of individual linear fea-
tures, we considered an approach which combines di�erent
individual features together as one classi�cation vector. Due
to the di�culty in obtaining the glottal spectral slope for
limited data and unsatisfactory performance of formant lo-
cation, we chose to combine fundamental frequency, phone
duration, and intensity. Since fundamental frequency is
frame-based while the other two are phone-based, we used
phone-based mean fundamental frequency as one of the three
components in the combinational feature. The Bayesian Hy-
pothesis testing approach was also used for classi�cation be-
tween neutral and stressed speech. Although duration and
intensity do not have high classi�cation rates individually,



the combinational feature can achieve very high accuracy.
Table 1 lists classi�cation error rates with di�erent length
input test vectors. For a vector length of 10, the feature can
achieve 83.33{100% accuracy, which is measurably higher
than fundamental frequency alone. Furthermore, the com-
binational feature outperforms the individual fundamental
frequency for all stress styles (angry, loud, and Lombard).

4. NONLINEAR TEO FEATURES

While linear speech production features have been consid-
ered for stress classi�cation, several recent studies have re-
vealed the promise of nonlinear features. One study which
considered stress classi�cation using a nonlinear feature fo-
cused on the shape of a pitch normalized TEO pro�le [1].
Good classi�cation performance was obtained for speech
produced under angry, loud, clear, and the Lombard e�ect
speaking conditions. The approach used a Mellin trans-
form to remove the impact of pitch period variations be-
fore stress classi�cation. Although that study was lim-
ited to binary stress classi�cation of front and mid vow-
els, it did suggest that nonlinear speech analysis might be
helpful for stress classi�cation. Based on studies by Tea-
ger [19], Kaiser [11, 12], and Maragos et al. [15], evidence
suggests that speech production is not actually a linear pro-
cess, which is typically assumed by linear acoustic theory,
but a nonlinear process where speech can be decomposed
into amplitude (AM) and frequency (FM) modulated com-
ponents via the TEO. In our previous studies [23, 24, 26],
we proposed three nonlinear TEO-based features for stress
classi�cation. These included the TEO-decomposed FM
variation (TEO-FM-Var), Normalized TEO Autocorrelation
Envelope Area (TEO-Auto-Env), TEO pro�le-based pitch
(TEO-Pitch), and TEO-Auto-Env with critical band based
frequency partition (TEO-CB-Auto-Env). To evaluate the
performance of these features for stress classi�cation, the
SUSAS database and a baseline 5-state HMM-based stress
classi�er with continuous Gaussian mixture distributions
were employed. Two HMM models (neutral and stressed)
were trained for each pairwise classi�cation. For comparison
purposes, we also evaluated MFCC and pitch along with our
four TEO-based features. It was shown that TEO-based fea-
tures are e�ective for stress classi�cation, especially the two
TEO autocorrelation-based features, TEO-Auto-Env and
TEO-CB-Auto-Env. These features outperform traditional
MFCC and pitch in terms of accuracy and consistency across
three stress styles (angry, loud, and Lombard).

4.1. Assessment of Actual Speech Under Stress Us-
ing TEO-Based Features

In addition to stress classi�cation using TEO-based features,
we also evaluated their ability of assessing stress. In [23, 26],
we reported some preliminary results for stress assessment
using the NATO SUSC-0 database1. In that evaluation,
four sentences with a single voiced portion each were ex-
tracted for assessment. To achieve more reliable results, we
extended the sentence number to 12 and used 4 di�erent
voiced portions across each sentence. Table 2 summarizes
the sentences with all extracted voiced portions highlighted.

1SUSC-0 consists of �ghter cockpit speech communication un-
der emergency conditions. Audio examples of this and SUSAS
can be found at
http://www.ee.duke.edu/Research/Speech/stress.html

Sentence 1 was extracted from the initial ground aircraft
system check. Sentences 2 to 7 represent phrases from pre-
liminary discovery of engine problems to problem allocation.
Sentences 8 to 11 were spoken while emergency actions were
taken. The last sentence indicates the safe resolution of the
emergency. To assess stressed speech, two HMM models
were trained, representing neutral and stressed conditions,
respectively. The assessment score was computed as the
di�erence of likelihood scores obtained from the two HMM
models from the input token. In this evaluation, the as-
sessment score of each sentence was obtained from 4 voiced
portions. We trained the neutral HMM model from SUSAS
neutral training data. For the stressed HMM model, we
trained two models, one from SUSAS actual domain and
the other from SUSAS simulated angry, loud and Lombard
domains. Evaluation results are shown in Fig. 1. We can see
that all scores from MFCC and TEO-Auto-Env are close to
zero, indicating that these two features are not as e�ective in
assessing the degree of stress. The other two features, TEO-
CB-Auto-Env and pitch, show variations that correspond to
the degree of stress as perceived by a listener. Both simu-
lated and actual stressed HMM models show similar score
variations although the actual anchor model results in larger
uctuations due to higher degree of stress from the training
data. The peaks in pitch for sentence 9 are attributed to
incorrect pitch estimation.

Sentences from Mayday2 Domain of SUSC-0
No. Sentence

1 avionics lIGHt hydrAUlic oil pressure lIGHt
engine indications ARE ...

2 AND you'er gONNA declare an
emERgency or am I

... checklist OIl pressure malfunction G
3 one-hundred ... cruise altitude stORe

jett ... throttle minimize mOvement ...
4 roger that OIl indicAtion is nOW zERO

... ALRIGHt newt ... engine
5 fault lIGHt still lit ... hydrAUlics

are ... total pOUNds six ...
and I'm going there and I'm there I'm

6 desENding down to ten grANd right
I'm nOt picking up a tAcan lock

7 no I'M doing ALRIGHt now
and the rAdial is whAt

8 okAY give me immEdiate vectors this
is an emERgency I'm engine OUt

9 gIve me hEAdings I nEEd headings nOW
10 put the cAble dOWN pUt the cAble down
11 I'm hOt I nEEd the cAbLe ...
12 mAn I thOUGHt I wAs gOne

Table 2: Sentences from SUSC-0 for Stress Assess-
ment Evaluation

5. CONCLUSIONS AND DISCUSSIONS

In this paper, we presented an overview of di�erent meth-
ods for stress classi�cation. After reviewing studies per-
formed by other researchers, we discussed our recent meth-
ods using nonlinear TEO and linear speech based features
for stress classi�cation. Furthermore, two new evaluations
were presented. The evaluation of combinational linear fea-
ture with three components: mean fundamental frequency,
duration, and intensity showed a signi�cant performance im-
provement over individual linear features (fundamental fre-
quency, duration, intensity, glottal source, and formant lo-



Vector Speaking Style of Submitted Test Speech OVERALL ERROR RATES
Length Neutral Angry Neutral Loud Neutral Lombard Mean �mALL stand. dev. �ALL

1 17.58 17.03 11.67 11.97 19.85 21.21 16.55% 3.97
5 6.15 5.00 4.62 4.62 13.08 13.08 7.76% 4.16
10 1.67 0.00 3.03 3.03 13.64 16.67 6.34% 6.98

Table 1: Error Rates (percentage) of Open-set Pairwise Stress Classi�cation Using the combination of mean
pitch, duration and intensity as the feature.
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Figure 1: Assessment results for pilot's speech from
Mayday2 domain of SUSC-0 database (Log likeli-
hood ratio is shown along Y-axis while sentence
number is shown along X-axis): (a) HMMs of Neu-
tral vs SIMULATED stress (Loud, Angry and Lom-
bard); (b) HMMs of Neutral vs ACTUAL stress

cations) for stress classi�cation. A second evaluation using
NATO SUSC-0 actual stress database showed that the TEO
autocorrelation envelope feature with critical band based fre-
quency partition is promising for stress assessment. Since
both linear and nonlinear features are e�ective, a combi-
nation of linear and nonlinear features may be needed for
universal speaker stress classi�cation. Issues which are im-
portant to consider for stress classi�cation include: (1) how
to establish neutral and stress anchor models, (2) consis-
tency for a given speaker and across unseen speakers, (3)
types of speaker stress, and (4) relationship between au-
tomatic methods and human stress assessment. Since no
universal objective standard exists to quantify stress clas-
si�cation feature performance, it is suggested that further
research is needed.
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