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ABSTRACT

The NATO research study group on “Speech and Language Tech-
nology” recently completed a three year project on the effect of
“stress” on speech production and system performance. For this
purpose various speech databases were collected. A definition of
various states of stress and the corresponding type of stressor is
proposed. Results are reported from analysis and assessment stud-
ies performed with the databases collected for this project.

1. INTRODUCTION

Stress is a psycho-physiological state characterized by subjective
strain, dysfunctional physiological activity, and deterioration of
performance (Gaillard, Wientjes, 1994). Stress may be induced
by external factors (workload, noise, vibration, sleep loss, etc.)
and by internal factors (emotion, fatigue, etc.). Among physio-
logical consequences of stress are respiratory changes, (e.g. in-
creased respiration rate, irregular breathing, increased muscle ten-
sion of the vocal cords, etc.). The increased muscle tension of the
vocal cords and vocal tract may, directly or indirectly, adversely
affect the quality of speech. Military operations are often con-
ducted under conditions of stress, induced by physical or mental
stressors, for example: high noise environments, g-force, physical
workload, mental workload, sleep deprivation, fear and emotion,
confusion due to conflicting information, psychological tension,
pain, and other typical conditions encountered in a military work-
environment. These stresses are believed to affect voice quality,
and are likely to be detrimental to the performance of commu-
nication equipment (e.g. low-bit-rate secure voice systems) and
systems with vocal interfaces (e.g., advanced cockpits, command,
and control systems). The NATO research study group (officially
AC232/IST/TG01, formerly RSG10) initiated in 1994 the project
“Speech under Stress”. The goals of this project were (1) to obtain
reliable (objective) stress measures deduced from speech signals
and (2) to study the effect of speech under stress on the perfor-
mance of speech technology equipment.

Through NATO cooperation a wide international community
was invited to share in the data collected in this project and to ex-
change experimental results. For this purpose a special workshop
was organized, and a special issue in the Journal of Speech Com-
munication was produced.

2. DEFINITIONS OF STRESS

The implication of being “under stress” is that some form of pres-
sure is applied to the speaker, which may result in a perturbation

of the speech production process, and hence of the acoustic signal.
It often happens that the pressure is in some sense threatening to
the speaker (especially in the context of military operations), but
this is not always so, such as for workload fatigue. This reasoning
necessarily implies that a “stress free” state exists, i.e. when all
pressure is absent.

As a result of the study, the effect of various stressors on the
layered speech production process could be identified (Murray,
Baber, and South, 1996). In Table 1, a possible relation between
stages in the production process and various stressors is given.

zero-order The stressors are classified according to the level at
which the stressor acts. The stressors whose effects are easiest
to understand are those which have a direct physical relation
on the speech production process.

first-order “First-order” stressors result in physiological changes
to the speech production apparatus, altering the transduction of
neuromuscular commands into movement of the articulators.

second-order “Second-order” stressors are those which affect the
conversion of the linguistic program into neuromuscular com-
mands. This level could perhaps be described as “perceptual”
as it involves the perception of a need to change the articula-
tory targets, but without involving higher level emotions.

third-order “Third-order” stressors have their effects at the high-
est levels of the speech production system. An external stimu-
lus is subject to mental interpretation and evaluation, possibly
as a threat (as implied by the word “stress”), but other emo-
tional states such as happiness will also have their effect at
this level.

3. COLLECTION OF DATA BASES

For the study “Speech under Stress” various types of databases
were recorded and calibrated. The idea was to cover all four stres-
sors as described in Section 2. The databases were made widely
available in order to be able to share experimental results with
other researchers outside this project. The following databases
were collected:

SUSC-0/1 (Speech under Stress Conditions) This database in-
cludes:

1. Recordings from fighter cockpits and controllers, stres-
sor psychological.

2. Two recordings from fighter cockpits during realistic
alert, stressor psychological (anxiety).



Table 1: Outline of speech production process , order of stressors and Taxonomy.

Main Stages of Speech Production ProcessOrder of Stressor Stressor Description Stressors
Ideation 3 Psychological Emotion, workload, anxiety

Generation articulatory targets 2 Perceptual Noise (Lombard), speech quality.
Muscular commands and actions 1 Physiological Medicines, Narcotics, Fatigue, Illness, etc.

Acoustic output 0 Physical Vibration, Acceleration, physical work load

3. Read speech sentences, stressor physiological (physical
exertion).

SUSAS (Speech Under Simulated and Actual Stress) This database
includes:

1. Talking styles, stressor psychological simulated,

2. Lombard speech, stressor perceptual,

3. Computer tracking tasks, stressor psychological (time
pressure, workload),

4. Roller Coaster rides, stressor physical and psychological
(acceleration, and exhilaration),

5. Helicopter commands and spontaneous phrases, stres-
sor physical, perceptual, and psychological (noise, vi-
bration, anxiety).

DLP (DERA license plate) This database consists of prompted
phrases of British car numberplates, stressor psychological
(time pressure).

A full description of these databases and audio examples can
be obtained at the NATO Stress Web page1, which also includes
access to additional documentation.

4. ANALYSIS, CLASSIFICATION AND DETECTION OF
STRESS

Many studies were performed on changes in the characteristics of
speech produced under influence of perceptual and physical stress
(noise, vibration, and g-force). However, for other types of stress
research efforts were restricted to a limited number of subjects
or an experimental design which was focused on a specific stres-
sor. The parameters generally considered in evaluating changes
in speech characteristics are: intensity, pitch, duration, vocal tract
spectrum, glottal source and vocal tract articulatory profiles. The
last two parameters can not be derived directly from the speech sig-
nal but require measurements directly related to the speaker which
restricts the flexibility.
Intensity In general the average intensity is observed which in-

creases in noise (Lombard reflex), with anger or some types
of high workload. It was also found that mainly vowels and
semivowels show a significant increase in intensity while con-
sonants did not.

Pitch Pitch is the most widely considered parameter of stress
evaluation. Pitch contours, variance and distributions are ob-
served. In Fig. 1 a distribution of pitch samples is given for
neutral, Lombard and angry speech.

Duration Mean word duration is a significant indicator of speech
in slow, clear, angry, Lombard and loud conditions. Individual
phoneme class duration under many conditions is significantly
different for all styles.

1http://www.ee.duke.edu/Research/Speech/stress.html
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Figure 1: Distribution of pitch samples for normal, Lombard, and
angry speech tokens.

Vocal tract Spectrum Formant location and formant bandwidth
show significant changes under various types of stress condi-
tions. An example after (Bond et al., 1989) showing the effect
of noise on the first and second formant frequency is given in
Fig. 2.
Stress classification and detection is used for forensic and

intelligence purposes. Research is conducted on various types
of classifiers such as HMM and neural nets with Cepstral-based
features and the so-called Teager Energy Operator (Teageret
al. 1989). TEO is a non-linear differential operator which detects
modulations in the speech signal and further decomposes the sig-
nal into AM and FM components. Although a number of features
were investigated for stress classification, there are still many is-
sues which need further research. These include features which
change with stress, and the need for neutral and stressed reference
models.

5. EFFECTS ON THE PERFORMANCE OF SPEECH
TECHNOLOGY SYSTEMS

With the three recorded databases, assessment experiments were
performed on speech and speaker recognition. In this paper we
will report brief results obtained by Gallardo-Antolinet al.(1997),
Hansenet al.(1997), and Willemetet al.(1998).

5.1. Speech recognition with SUSAS
To illustrate the problem of speech recognition in stress and noise,
a baseline speaker-dependent, 5-state, discrete-observation HMM
speech recognizer (VQ-HMM) was employed on noisefree and



Table 2: Recognition performance of speaker-dependent neutral trained discrete density HMM tested with neutral and stressed type speech
in noise free and noisy conditions.

Stressful Speech Recognition (Speaker-Dependent, Discrete-Density HMM)
Condition N Sl F So L A C Q C50 C70 Lom � �

Noise-free 88.3% 60% 65% 48% 50% 20% 68% 75% 63% 63% 63%57.5% 15.35
Noisyy 49% 45% 28% 33% 18% 15% 40% 28% 35% 33% 28%30.3% 9.12

yAdditive white Gaussian noise,SNR = +30 dB.

Stressed Speech Styles Key:
N – neutral So – soft C – clearly spoken C50 – Moderate Load Computer Task Condition
Sl – slow L – loud Q – question C70 – High Load Computer Task Condition
F – fast A – angry Lom – Lombard effect noise condition

Table 3: Recognition performance of speaker-independent neutral trained continuous density (2 mixtures per state) HMM models tested
with neutral and stressed type speech in noise-free conditions.

Models Stressful Speech Recognition (Speaker-Independent, Continuous-density HMM)
Trained with N C C50 C70 Lom So Q L Sl F A

Neutral Speech 96% 95.6% 95.4% 93.3% 91.6% 90% 85.9% 83.6% 83% 79.8% 73.5%
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Figure 2: Shift of average center frequencies of F1 and F2 for two
noise levels (male speakers).

noisy stressed speech from SUSAS (Table 2). The speaker-
dependent open baseline evaluations show that when stress is
present, recognition rates decrease significantly (rates for Lom-
bard effect, loud, and angry speech range from 20–63%, with
a neutral rate of 88.3%). When white Gaussian noise is intro-
duced, noisy stressed speech rates varies, with an average rate of
Avg10 = 30:3% (i.e., a58% decrease from the88:3% neutral
rate). Recognition performance also varies considerably across
stressed speaking conditions as reflected in the large standard de-
viation in rate of recognition (StDev10 = 15:35 and 9:12 for
noise free and noisy stressed conditions).

In addition, the baseline recognition performance of a speaker-
independent continuous density HMM employing mel-frequency
cepstral parameters and time derivatives is also reported (Table 3).
The data is parameterized using 12 mel-frequency cepstral coef-
ficients. A 25 msec Hamming window is used, and a first order
preemphasis is applied to the data using a coefficient of 0.97. Cep-

Table 4: Speaker-independent recognition results for a neutral
trained model when tested with neutral and actual motion-fear
stressed speech.

Models Models Tested With
Trained With Neutral Actual Stress
Neutral Speech 90.26% 26.67%

stral mean normalization is performed on the cepstral parameters
to compensate for long-term spectral effects.

Baseline recognition performance using the fourth domain of
SUSAS is reported in Table 4. A total of 35 tokens were used
to train each HMM word recognizer. The speaker population em-
ployed in training the neutral models consists of 9 male speakers,
while four different male speakers are employed for testing. For
each word model, a total of 63 neutral tokens (7 tokens per word
� 9 speakers) are employed for training a 2-mixture continuous
density 5-state left-to-right HMM model. The same parameter set
described previously is used for training and recognition. A total
of 575 tokens is employed for testing the neutral trained speaker-
independent recognizer. The recognition accuracy of the models
trained and tested with neutral speech is 90.26%. Models trained
with neutral speech, and tested with actual motion-fear stressed
speech achieves a 26.67% recognition accuracy. Hence, the recog-
nition error is 63.59%.

5.2. Speech recognition with DLP

The DLP data base consists of license plate numbers spoken by us-
ing the ICAO alphabet (alpha, bravo, etc.) and numbers. A total of
159 number plates spoken by 12 male and 4 female speakers was
used for this assessment test. Two speaking conditions were used:
a moderate dictation rate and a high dictation rate. The recognition
system was an HMM based system. The training of the system was
according to a round robin schedule.

5.3. Speaker recognition with SUSC0/1

For this speaker recognition experiment a system based on a vec-
tor auto-regressive method was used. Each speaker was character-
ized by two prediction matrices based on a second order vector-
equation to predict the sequence of cepstral vectors. The system
was trained with 20 s speech tokens. A test database of 10 sen-
tences per speaker was derived from SUSC0/1. Three training-
test conditions, being combinations of neutral and stressed speech,
were evaluated. Also the effect of the length of the speech token



Table 5: Mean speaker-independent recognition performance
(% correct) of the DLP database for two training and test condi-
tions

Test condition Training Training
moderate task high task

Moderate task 98 98
High task 97 98

was studied, 20 s and 40 s tokens were used. The speaker recogni-
tion performance for these conditions is given in Table 6.

Table 6: Mean speaker recognition performance for three training-
test conditions and two utterance lengths.

Train-test condition 20 s utterance 40 s utterance
Neutral-neutral 95 100
Neutral-stressed 83 81
Stressed-stressed 91 99

5.4. Speaker recognition with SUSAS

A standard Gaussian mixture model was used to perform a speaker
recognition task with the SUSAS database for seven speaking
styles and nine male talkers. The training was performed with
35 isolated words. For each speaking style a test was performed
with neutral speech data and with speech data with speaking style
matched for training and test. In Table 7 the speaker recognition
performance is given (% correct). Again, speaker recognition per-
formance is significantly effected by mismatched training and test
conditions

Table 7: Speaker recognition performance (% correct) with the
SUSAS database for 7 speaking styles with matched and mis-
matched (neutral) training.

Test condition Neutral training Matched training
Neutral 96 96
Angry 34 75
Fast 91 90
Lombard 48 99
Loud 22 81
Slow 90 98
Soft 73 89

6. DISCUSSION AND CONCLUSIONS

The primary goal of the study reported here was to identify the
effect of various types of stress on the effectiveness of communi-
cation in general, but also on the performance of communication
equipment and systems equipped with vocal interfaces.

The first step, data base collection, was to make choices be-
tween realistic uncontrolled conditions or simulated (better con-
trolled) conditions. The SUSC1/0 is an example of the first group
(recording in a fighter cockpit during crash conditions). The
SUSAS and DLP data bases include simulated stress by asking
subjects to respond to an externally controlled condition such as
speaking rate (DLP), or speaking style (SUSAS), or dual tracking
computer workload (SUSAS). Finally “roller coaster” experiments

simulate conditions of mental and physical stress but the subjects
were not trained as a fighter pilot (SUSC0/1).

In conclusion a variety of calibrated data was collected cover-
ing a moderate range of stress conditions. Parameters indicating
a change in speech characteristics as a function of the stress con-
dition (e.g., pitch, intensity, duration, spectral envelope) were ap-
plied on several samples of stressed speech. The effect on speech
obtained for perceptual (noise) and some physical stressors is evi-
dent. More difficult to determine is the effect on speech obtained
for psychological and physiological stressors.

The effect of stressed speech on the performance of automatic
speech recognizers and automatic speaker recognizers is for some
type of stress marginal (DLP) while the speaking style has a major
effect. Systems trained with matched training data (same type of
speech material) do not show a major decrease in performance for
stressed speech. However, for some applications obtaining such
data for re-training speech systems is difficult. The project pro-
vided the NATO research study group with many interesting re-
sults but also initiated new activities. Presently a project is con-
ducted on the “Multi-lingual Interoperability of Speech Technol-
ogy Systems.”
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