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ABSTRACT

This paper considers the problem of interpolating a signal from one
uniformly-spaced grid to another, where the grid spacings may be
related by an arbitrary, irrational factor. Noting that interpolation
is the digital equivalent of magnification, we begin by reviewing
optical systems for magnification and “computation” of the chirp
Fourier transform. This route suggests several analog schemes for
magnification, which can be discretized to produce algorithms for
interpolation. We then derive one of these algorithms from first
principles, using a digital-signal-processing perspective. The re-
sult is an important, but forgotten, algorithm for interpolation first
suggested as an application of the chirp-z transform by Rabiner,
Schafer, and Rader. Unlike the earlier derivation, our approach is
direct – we do not make use of Bluestein’s trick of completing the
square. In addition, our approach identifies parameters under user
control that can be optimized for best performance.

1. INTRODUCTION

Interpolation between two uniform grids is a requirement in many
diverse fields including digital communications, image process-
ing, and computational imaging. Displaying a part of an image
at an increased size (zooming) requires accurate two–dimensional
interpolation from one Cartesian grid to another by almost arbi-
trary factors. CT, MRI, and SAR are examples of computational
imaging systems that require extensive interpolation.

Efficient and well known methods are available for sampling
rate change from one uniform grid to another when the ratio of
sampling periods,R, is a rational number with small factors [1, 2].
However, whenR is irrational or a ratio of two large primes, it is
widely believed thatR must be rounded to a rationalR̂ with small
factors. Doing so causes error. Another problem with some in-
terpolation approaches is the required design of exceedingly high-
order FIR filters. Due to these difficulties, other methods of sam-
pling rate change have been proposed [3]. These methods are
based on the idea of employing non-periodically shift-varying FIR
filters instead of the periodically shift-varying structure of earlier
methods [4]. However, these methods require either a huge mem-
ory to store the filter coefficients, or a considerable amount of com-
putation to update the filter coefficients between every two consec-
utive outputs [3].

An exception is an algorithm utilizing the chirp transform,
which was revealed many years ago [5]1. In this important work,

1In this paper we have use for the chirp-z transform evaluated only
on the unit circle in the z-plane (not on a contour that spirals inward or

the operation of interpolation was briefly considered as an appli-
cation of the chirp transform, and then forgotten. Indeeed, several
years ago, we rediscovered the method of “chirp interpolation” and
published a comprehensive study of this technique [7, 8]. A num-
ber of applications use chirp interpolation, including the linogram
method in tomography [9, 10] and the chirp scaling image forma-
tion algorithm in strip-mapping SAR [11]. More fundamentally,
the mathematical basis of chirp interpolation has been known for
many years in the optics community where magnification is the
analog version of interpolation [12, 13].

This paper has two thrusts. We begin in Section 2 by review-
ing simple optical systems for magnification and “computation” of
the Fourier transform. We show analog signal processing equiva-
lents of these systems involving multiplications by and convolu-
tions with linear FM chirp signals. These notions form the con-
ceptual basis for several approaches to interpolation by an arbi-
trary factor. The second thrust is to then devise an efficient digital
scheme for implementing one of the interpolators suggested by the
optical analysis. Instead of attempting a direct discretization, Sec-
tions 3 and 4 present a “DSP approach” to arriving at the same
point, which was originally presented in [7, 8]. Section 3 provides
the Fourier-domain relation between the original and the interpo-
lated sequences. Then, using this analysis and making a number
of approximations, Section 4 gives a derivation of a chirp interpo-
lation algorithm that corresponds to one of the systems suggested
by the optical analogy. Unlike the original derivation in [5], our
approach is direct – we do not make use Bluestein’s trick of com-
pleting the square. As a biproduct of our approach, we identify
parameters in the chirp interpolation algorithm that can be opti-
mized for best performance. We also show how block processing
can be used to interpolate sequences of arbitrary length.

2. OPTICAL CONCEPTS UNDERLYING
INTERPOLATION AND THE CHIRP TRANSFORM

Magnification in an optical system is the analog equivalent to in-
terpolation. Figure 1 (a) shows the geometry for a simple optical
magnification system [12]. We assume a monochromatic coherent
wave propagating in a direction along the axis of the lens. For sim-
plicity, we restrict to a 1-D version of this system whereg(x) is the
complex amplitude of the wavefront in the input plane at distance
d1 from the lens. Here,x represents the vertical spatial coordinate.
If we define the output plane to be at distanced2 from the lens and

outward). In keeping with the modern terminology employed in [6], we
refer to this special and most important case of the chirp-z transform as the
chirp transform.



selectd1 andd2 so that they satisfy the lens law

1=d1 + 1=d2 = 1=f (2.1)

wheref is the focal length of the lens, then the complex amplitude
of the field in the output plane will be a magnified (and inverted)
version ofg(x), as given [12]. The signal processing equivalent to
the optical magnification system is shown in Figure 1 (b). Here,
we have used the fact that the Fresnel approximation to propa-
gation corresponds to convolution with a linear FM signal, and
that a lens imparts quadratic phase. Thus, the two boxes in Fig-
ure 1 (b) are linear shift-invariant systems with the chirp impulse
responses shown, and the multiplication by a chirp signal models
the lens. This system is the same as that on p. 203 in [13], ex-
cept that we have shown the exact output described at the top of p.
204. This system can be modified to create the system in Figure
1 (c), which produces a noninverted output without the multiplica-
tive phase term.
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Figure 1: (a) Optical magnification system. (b) Corresponding
signal processing system that produces essentially the same result.
(c) System that produces a noninverted output.

Discretizing Figure 1(c) will lead to an algorithm for interpo-
lation by arbitrary factors. However a larger class of approaches to
interpolation can be motivated by considering first a lens with the
standard Fourier transform geometry shown in Figure 2(a) where
both the input and output planes are located a focal distance from
the lens [12]. The corresponding analog signal processing sys-
tem is shown in Figure 2 (b). (It requires some tricky algebra to
show that this system produces the output shown.) This system
can be simplified to a system containing two multipliers and a sin-
gle filtering operation, which is shown in Figure 3 (a), and which
is equivalent to the system shown on p. 201 in [13].

Both Figures 2 (b) and 3 (a) produce frequency-scaled ver-
sions of the Fourier transform, i.e., an analog chirp transform.
However, in this paper we shall reserve the term chirp Fourier
transform for only Figure 3 (a), which is the continuous-time ver-
sion of the digital chirp transform on p. 625 in [6]. Figure 3 (b)
shows an analog inverse chirp Fourier transform. Now, since a
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Figure 2:(a) Optical Fourier transform system. (b) Corresponding
signal processing system that produces a similar result.
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Figure 3: Schemes for computing scaled forward and inverse
Fourier transforms.

scaled Fourier transform corresponds to a scaled (inversely) time
or spatial-domain function, there are many ways to combine for-
ward and inverse Fourier and chirp Fourier transforms to produce
interpolators. Three of these schemes are shown in Figure 4. Fig-
ure 4 (c) splits the magnification between two chirp Fourier trans-
forms. In the next two sections we derive a discrete form of Figure
4 (a), which is the chirp interpolation algorithm first mentioned in
[5]. In a similar way, we could derive a discrete version of Figure
4(b). Our approach is considerably different from that in [5, 6],
which relies on the Bluestein trick of completing the square. We
instead base our derivation on how the alteration of the sampling
rate in the time domain affects the scaling of the Fourier variable
in the discrete-time Fourier transform.

3. FOURIER-DOMAIN RELATION BETWEEN
ORIGINAL AND INTERPOLATED SEQUENCES

In this section, we develop the Fourier-domain relation between
samples of a bandlimited analog signal taken at two different rates.
Let x1(n) andx2(n) be samples of an analog signalxa(t) taken
at uniform intervals ofT1 andT2, respectively. The Discrete-Time
Fourier Transforms (DTFTs) of the sample sequences are defined
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Figure 4: Schemes for magnification (interpolation) by an arbi-
trary factor. Chirp Fourier Transform refers to Figure 3(a). In-
verse Chirp Fourier Transform refers to Figure 3(b).

as usual by

Xi(�) =

1X
n=�1

xi(n)e
�jn� (3.2)

Our goal is to expressX2(�) in terms ofX1(�). This will lead us
to the chirp interpolation algorithm suggested by Figure 4(a).

AssumingT1 satisfies the Nyquist criterion, the Fourier trans-
form of xa(t),Xa(!), is related to the DTFT ofx1(n) by

Xa(!) =

�
T1X1(T1!); j!j � �

T1
,

0; �
T1

< j!j, (3.3)

Similarly, if T2 also meets the Nyquist criterion, we can write

X2(�) =
1

T2
Xa

�
�

T2

�
; j�j � �: (3.4)

Both 3.3 and 3.4 follow from the standard relation

Xi(�) =
1

Ti

1X
k=�1

Xa

�
�+ 2�k

T2

�
(3.5)

where the terms of the summation do not overlap if the sampling
period satisfies the Nyquist criterion. Now, ifT2 < T1 which
corresponds to an increase in sampling rate, by using 3.3 and 3.4,
we can expressX2(�) in terms ofX1(�) as

X2(�) =

�
T1
T2
X1(

T1
T2
�); j�j � T2

T1
�,

0; T2
T1
� < j�j � �,

(3.6)

Alternatively, ifT2 � T1, corresponding to a decrease in sampling
rate, we have

X2(�) =
T1
T2
X1

�
T1
T2

�
�
; j�j � � : (3.7)

By using the above relationship and the inverse DTFT, we can ex-
pressx2(n) as

x2(n) =
1

2�

Z �

��

T1
T2

 
1X

m=�1

x1(m)e
�j T1

T2
m�

!
ejn�d�;

(3.8)
where the integration limit is defined as:

� = min
�
T2
T1
�; �
�

: (3.9)

Equation 3.8 explicitly relates the two sample sequences to each
other. However, the infinite summation in 3.8 makes it impractical
to directly use 3.8 to obtainx2(n) from x1(n). Therefore, we
will use the following approximate relationship where the infinite
summation is truncated and the integration is approximated by its
uniform Riemann approximation

x2(n) ' �

2�

T1
T2

L

2
�1X

k=�L
2

N1

2
�1X

m=�N1
2

x1(m)w(m)e
�j�k

�
T1

T2
m�n

�
�(k);

(3.10)
where� is a weighting function that can be applied to the Riemann
sum which uses uniform intervals of size� andL = 2�

�
. Here

it is assumed that bothN andL are chosen as even numbers. To
avoid potential frequency aliasing, for allm andn the choice of�
must satisfy �����T1

T2
m� n

���� � � (3.11)

which is assured by choosing� as

� =
2�

M
; for M � T1

T2
N1 +N2 : (3.12)

In the following section, we derive the steps of the chirp interpola-
tion algorithm which efficiently computes 3.10. Before going into
details of the algorithm, however, we first simulate 3.10 to show
that it produces an accurate interpolation. In our simulation we
suppose that the input sequencex1(n) is 182 Nyquist rate samples
of an analog signal that is bandlimited to� rad/sec. (T1 = 1),
and that we are required to obtainx2(n) which are samples of the
analog signal obtained at a rate

p
2, which represents a change in

sampling rate by an irrational factor. The original analog signal is
chosen to be:

xa(t) =

100X
k=1

ak
sin(2�fk(t� tk))

2�fk(t� tk)
(3.13)

whereak, fk and�k are uniform random variables on the intervals
[�1; 1], [0; 0:5] and[�N1T1

2
; N1T1

2
] respectively. The output sam-

plesx2(n) were approximated by using 3.10 where� was chosen
as 2�=512, and both weighting functionsw(m) and�(i) were
chosen as 1 over their respective regions of support: the integers
in [�92; 91] and[�181; 181]. For this case, after a little algebra,
3.10 can be expressed as

x2(n) '
p
2

91X
m=�92

x1(m)
1

512

sin
�
362�(

p
2m�n)

512

�
sin
�
�(
p
2m�n)
512

� ; (3.14)

which is a close approximation to Shannon sinc interpolation. This
formula was used to compute interpolated samplesx̂2(n) for�128 �
n � 127. In Fig. 5, both the actual samples and the interpolation
error is shown.



−100 −80 −60 −40 −20 0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

t

−100 −80 −60 −40 −20 0 20 40 60 80 100
10

−5

10
−4

10
−3

10
−2

10
−1

t

Figure 5: An example of chirp interpolation by a factor of
p
2: ac-

tual signal (top) and the magnitude of the interpolation error (bot-
tom).

4. CHIRP INTERPOLATION ALGORITHM

Direct computation of 3.10 requiresO(N2) complex multiplica-
tions when the number of input samples isN . Here we present an
efficient method for computing 3.10 using the chirp transforma-
tion.

The required computation of 3.10 can be performed in two
steps: first compute

h(k) =

N1

2
�1X

m=�N1
2

h
x1(m)w(m)e

�j T1
T2

m2 �

2

i
e
j
T1

T2
(m�k)2 �

2 ;

(4.15)
and then compute the approximate output samplesx̂2(n) as

x̂2(n) =
�

2�

T1
T2

L

2
�1X

k=�L
2

h(k)e
�j T1

T2
k2 �

2 �(k)ejnk� : (4.16)

The first step together with the multiplication ofh(k) by the first
complex exponential in 4.16, constitute a chirp transformation [5].
Here, we have moved the multiplication by this complex exponen-
tial into the second step for further computational saving. To see
that these two steps are equivalent to 3.10, one can substitute 4.15
in 4.16. This form of computation is preferred to the Shannon sinc
interpolation formula because the first step is a convolution , and
with the choice of� given in 3.12 the second step is an inverse
DFT, both of which can be efficiently computed via the FFT. Both
weighting sequences,w(m) and�(k), can be optimized for best
performance. We will report on this in a future paper.

By making use of block processing, the chirp interpolation al-
gorithm can also be used to process long input sequences. How-
ever, note that in the presentation of the chirp algorithm it was

assumed that the input and output samples were ”lined up” at the
origin, that is,x2(0) = x1(0), which may not be valid in the pro-
cessing of input blocks. Fortunately, this alignment problem can
be overcome easily by applying the necessary shifts to both the
input and the interpolated signals in the Fourier domain. Assum-
ing that each input block has lengthN1 and each output block has

lengthN2, then to process thepth input block to obtain theqth out-
put block the first step of the chirp algorithm given by 4.15 should
be modified as:

h(k) = h(k)e
j(qN2�pN1

T1

T2
)�2k

: (4.17)
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