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ABSTRACT

In many applications signals can only be sampled at nonuni-
formly spaced points. For a reliable reconstruction of the
signal from its samples we require knowledge of the band-
width of the signal, which however is often not known a pri-
ori. Therefore robust and efficient methods are needed that
allow to estimate the bandwidth of a signal from nonuni-
form spaced, noisy samples. We present two procedures for
bandwidth estimation. The first method is based on the dis-
crete Bernstein inequality and Newton’s divided differences
and is computationally very efficient. The second method
requires somewhat more computational effort, since it si-
multaneously estimates the bandwidth and provides a recon-
struction of the signal. It is based on a multi-scale conjugate
gradient algorithm for the solution of a nested sequence of
Toeplitz systems and is particularly useful in case of noisy
data. Examples from various applications demonstrate the
performance of the proposed methods.

1. INTRODUCTION

In many practical applications, for instance in geophysics,
spectroscopy, medical imaging, the signal cannot be sam-
pled at regularly spaced points. Thus one is confronted with
the problem of reconstructing an irregularly sampled sig-
nal. Often the signal can be assumed to be band-limited (or
at least essentially band-limited), but the actual bandwidth
is not known.

The problem of reconstructing a band-limited signalf

from regularly and irregularly samplesff(tj)gj2I has at-
tracted many mathematicians and engineers. Many theo-
retical results and efficient algorithms have been derived in
the last years, see e.g. [1, 2, 3, 4] and the references cited
therein. Most of these results are based on the assumption
that the bandwidth of the signal to be recovered is known a
priori.

However in many applications this assumption is not
justified. Only a few theoretical results are known for band-
width estimation from irregularly spaced data [5]. The im-
portance of choosing a proper bandwidth in order to avoid
underfitting or overfitting of noisy data is illustrated by means
of a simulated numerical example in Figure 1.

In this note we present two procedures for bandwidth
estimation. One method involves a discrete version of the
Bernstein inequality, see Section 3. The other method, dis-
cussed in Section 2, simultaneously estimates the bandwidth
and provides a reconstruction of the signal. It is based on a
multi-scale conjugate gradient algorithm for the solution of
a nested sequence of Toeplitz systems and is particularly
useful in case of noisy data. Examples from various appli-
cations demonstrate the performance of the proposed meth-
ods.

Before we proceed we introduce some notation. LetBN

be the space of bandlimited functions

BN = ff 2 L
2(R) : f̂(!) = 0 for j!j > Ng

wheref̂ denotes the Fourier transform off . Let ftjgj2Z
be a set of sampling points and denotey = ff(tjgj2Z. We
define the analysis operatorTN which maps signals inBN
to sequences iǹ2(Z) via

TNf = fhf; sincN (� � tj)igj2Z= f(f � sincN )(tj)gj2Z

wheref � g denotes convolution. The adjoint operator is
T �

N : `2(Z) 7! BN given by

T �

Nfcjgj2Z=
X
j2Z

cjsincN (� � tj) :

For f 2 BN we haveTNf = ff(tj)gj2Zsince in this case
T corresponds to a reproducing kernel onBN . It is known
that if the setfsincN (� � tj)g is a frame forBN then the
operator equation

TNf = y (1)

has a unique solution, in other wordsf can be reconstructed
from its samplesf(tj).

One efficient method for the solution ofTNf = y is
the conjugate gradient method applied to the normal equa-
tionsT �

NTNf = T �

Ny. This method is particularly useful
for the irregular sampling problem [4]. However to form
the systemTNf = y we already assume knowledge of the
bandwidth off , which may not be known in practice. Thus
we have to find a way to estimate the bandwidth off from
its (noisy) samplesf(tj) in order to reconstructf .
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(a) Bandlimited signal and
noisy samples
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(b) Reconstruction using a too
large bandwidth (overfit)
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(c) Reconstruction using a too
small bandwidth (underfit)
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(d) Reconstruction using pro-
posed algorithm

Figure 1: A good estimate of the bandwidth of a nonuni-
formly sampled signal is essential for signal reconstruction
from noisy data in order to avoid overfitting and underfitting
of the data. The proposed algorithm automatically adapts to
solution of optimal bandwidth.

2. A MULTI-LEVEL CG METHOD FOR
BANDWIDTH ESTIMATION

2.1. Theoretical considerations

Assume that we are given the datay = fyjg with yj =
f(tj) + �j and

P
j jyj � f(tj)j

2 � �2 wheref 2 BM

for some unknownM . We propose following multi-level
approach for combined bandwidth estimation and signal re-
construction.

Start at bandwidth orlevelN = 0 and apply the CG
method toT0f (0) = y where the superscript inf (0) indi-
cates the dependence of the solution on the chosen band-
width N = 0. We run the CG method until a certain level-
dependentinner stopping criterionis fulfilled, say, afterk
iterations, providing an approximationf (0)k . In other words
we check ifkT0f (0) � yk2 is smaller than a certain bound
(which will be specified below). If this level-dependent
outer stopping criterionis satisfied, we acceptf (0)k as ap-
proximate solution, otherwise we switch to the next level
N = 1, where we usef (0)k as initial guessf (1)0 for the CG

method to solveT1f (1) = y. We proceed for increasing
levelsN until the method terminates at a levelN � M .
The mathematical difficulty of this approach is to find well-
defined inner and outer stopping criteria to guarantee that:

� the multi-level CG method converges tof for � ! 0.
� we do not iterate too long at a certain levelN , be-

cause the actual solution may belong to a “higher-
level” spaceBM with M > N .

� we do not stop too early at a certain levelN because
the solution may actually belong toBN .

Hanke [6] showed by a counterexample that for noisy data
the error of the iterates of the CG method does not mono-
tonically decrease when the iteration is terminated with the
usual stopping rules. Therefore an important issue is to find
a stopping criterion, which guarantees monotonicity of the
iterates at each level.

Based on results obtained in a more general framework
of moment problems [7] we terminate the CG method at
levelN and switch to levelN+1 if following (level-dependent)
inner stopping criterion is satisfied for the first time

X
j

jf
N)
k (tj)� yj j

2 � 2�(� + ksincN � f � fk)kyk (2)

where� > 1. The multi-level algorithm is terminated (i.e.,
we stop the outer iterations) if following (level-independent)
outer stopping criterion holds

X
j

jf
N)
k (tj)� yj j

2 � 2��kyk : (3)

Clearly we cannot computeksincN � f � fk, sincef is not
known. In [7] the reader can find a procedure that describes
howksincN � f � fk can be estimated recursively.

2.2. Numerical implementation

For the numerical implementation of this method we use the
finite-dimensional model outlined in [4]. We assume that
we are given the sampless(tj); j = 0; : : : r � 1, wheres is
a periodic signal of periodL, i.e.,s(j) = s(j + kL). The
space of bandlimited functions is now given by

BN = fs 2 `
2(ZL) : ŝ(k) = 0 for jkj > Ng

whereŝ denotes the discrete Fourier transform ofs. Using
this model one can show that solving the normal equations
T �

NTNf
(N) = T �

Nff(tj)g is equivalent to solving a certain
Toeplitz systemANx(N) = b(N), wherex(N) contains the
non-zero Fourier coefficients off (N), cf. [4].

LetAN be the Toeplitz matrix at levelN , letAN+1 de-
note the Toeplitz matrix at levelN+1 and letfakg

2(N+1)
k=0 be

the first column ofAN+1. An important observation from



a numerical point of view is thatAN is embedded inAN+1

and as follows

AN+1 =

2
64

a0 : : : a2(N+1)
... AN

...
a2(N+1) : : : a0

3
75 :

An analogous result holds for the right hand sideb(N), see
also [8]. This observation reduces the computational effort
of the multi-level CG method considerably, since only two
new entries have to be calculated to establish the system
matrix at the next-higher level.
Remark: The proposed method can be easily generalized
to higher dimensions.

3. BANDWIDTH ESTIMATION BASED ON A
DISCRETE BERNSTEIN INEQUALITY

The estimation method described in this section is due to
K. Gröchenig, G. Zimmermann and the author. The key
observation is the fact that forf 2 BN it follows from a
discrete version ofBernstein’s inequality[9]. Let�s denote
the difference sequence�s(n) = s(n + 1)� s(n) (and by
periodicity�s(L � 1) = s(0) � s(L � 1). Then for all
s 2 BN

k�sk � 2 sin
�N

L
ksk (4)

hence we obtain following lower bound for regularly sam-
pled signals

N � arcsin
Lk�sk

2�ksk
: (5)

We approximate the difference operator using (higher-order)
divided differences applied to the given nonuniformlyspaced
samples. A more comprehensive discussion of this method
will be given elsewhere. This method is useful to obtain
an initial guess for the bandwidth for the multi-level CG
method.

4. NUMERICAL EXPERIMENTS

We present examples from spectroscopy and medical imag-
ing to demonstrate the performance of the method presented
in Section 2.
Experiment 1: Signal reconstruction in spectroscopy

In the first example we consider a signal from spec-
troscopy. The original signal of bandwidthM = 30 con-
sists of 1024 regularly spaced and nearly noise-free sam-
ples. We have added zero-mean white noise with a signal-
to-noise ratio of12% and have sampled this noisy signal at
107 nonuniformly spaced sampling points. The setup of this

experiment simulates a typical situation in spectroscopy. Since
the samples are contaminated by noise, we cannot expect to
recover the signal completely.

Figure 2 illustrates the resulting approximations by ap-
plying the ACT algorithm proposed in [4] using (a) a too
small bandwidth (b) a too large bandwidth (c) the original
bandwidth (d) and applying the proposed multi-level algo-
rithm which in this example terminates at bandwidth 23. Al-
though the bandwidth of the approximation is smaller than
that of the original signal, the SNR of this approximation is
better than the SNR using the correct bandwidth 30. The
reason is that the stopping criteria also serve asregulariza-
tion parameterthat force the algorithm to terminate before
the noisy in the data severely affects the reconstruction pro-
cedure.
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(a) Using a too small band-
width provides a too smooth
reconstruction, SNR = 6.479.
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(b) Using a too large band-
width provides a highly oscil-
lating solution, SNR = 11.913.
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(c) Even using the actual
bandwidth may result in over-
fitting the data due to the
noise, SNR = 18.804.
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(d) Regularized solution us-
ing proposed method, SNR =
21.019.

Figure 2: Optimal control of the bandwidth of the solution is
essential for signal reconstruction from noisy nonuniformly
spaced samples in order to avoid overfitting and underfitting
of the data. The proposed method automatically adapts to
the solution of optimal bandwidth.

Experiment 2: Contour recovery in Echocardiography
In clinical cardiac studies the evaluation of cardiac func-

tion using parameters of left ventricular contractibility is an



important constituent of an echocardiographic examination.
These parameters are derived using boundary tracing of en-
docardial borders of the Left Ventricle (LV). The extraction
of the boundary of the LV comprises two steps, once the
ultrasound image of a cross section of the LV is given, see
Figure 3(a)–(d). First an edge detection is applied to the
ultrasound image to detect the boundary of the LV, cf. Fig-
ure 3(c).

However this procedure may be hampered by the pres-
ence of interfering biological structures (such as papillar
muscles), the unevenness of boundary contrast, and various
kinds of noise [10]. Thus edge detection often provides only
a set of nonuniformly spaced, perturbed boundary points
rather than a connected boundary. Therefore a second step
is required, to recover the original boundary from the de-
tected edge points, cf. Figure 3(d). Since the shape of the
Left Ventricle is definitely smooth, bandlimited functions
are particularly well suited to model its boundary. For more
details how to transform the problem of recovering the con-
tour from detected noisy boundary points into a 1-D nonuni-
form sampling problem we refer the reader to [8].
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(a) 2-D echocardiography (b) Cross section of Left Ven-
tricle

(c) Detected boundary points (d) Recovered boundary of LV
using proposed method

(e) Underfitted solution (f) Overfitted solution

Figure 3: The recovery of the boundary of the Left Ventricle
from 2-D ultrasound images is a basic step in echocardio-
graphy to extract relevant parameters of cardiac function.
The contour in (d) has been computed by the multi-level
method, it provides the optimal balance between fitting the
data and preserving smoothness of the solution.


