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ABSTRACT

Two systems are presented for compression of hyperspectral im-
agery. These systems utilize adaptive classification, trellis-coded
quantization, and optimal rate allocation. In the first system, DPCM
is used for spectral decorrelation, while an adaptive wavelet-based
coding scheme is used for spatial decorrelation. The second sys-
tem uses DPCM in conjunction with an adaptive DCT-based cod-
ing scheme. In each system, entropy-constrained trellis-coded quan-
tization (ECTCQ) is used to quantize the transform coefficients.
Entropy-constrained codebooks are designed for generalized Gaus-
sian distributions by using a modified version of the generalized
Lloyd algorithm. The wavelet-based system compresses an AVIRIS
hyperspectral test sequence at 0.118 bits/pixel/band, while retain-
ing an average peak signal-to-noise ratio (PSNR) of 41.24 dB.
The DCT-based system achieves the same bit rate with an aver-
age PSNR of 40.72 dB.

1. INTRODUCTION

There has recently been increased interest in the field of re-
mote sensing to perform precise recording of sensed energy in a
number of narrow wavelength slices. Since various surface mate-
rials of interest have absorption features that are only 20 to 40 nm
wide [1], the ability to discriminate among such features on the
Earth’s surface requires sensors with very high spatial, spectral,
and radiometric sensitivity.

The next-generation of high-dimensional multispectral sen-
sors are capable of collecting radiation in hundreds of distinct spec-
tral bands in the visible and near-infrared wavelength region, with
each band being on the order of1000 � 1000 pixels. Combining
these parameters with a radiometric sensitivity of 12 bits would
produce a singlehyperspectralimage which comprises several hun-
dred megabytes of digital information.

The algorithms developed in the present work for compression
of hyperspectral imagery are based on DPCM used in conjunc-
tion with either the discrete wavelet transform (DWT), or the dis-
crete cosine transform (DCT). In the wavelet-based coder, DPCM
is used for spectral decorrelation, and each “error image” is coded
using an adaptive 2-D DWT coder. In this coder, the error im-
age is transformed using a 10-band octave split. Each subband
is classified into one of J classes by maximizing the coding gain.
All resulting sequences are quantized using entropy-constrained
trellis-coded quantization (ECTCQ) [2].

In the DCT-based coder, the error image is divided into non-
overlapping8 � 8 blocks and transformed using the DCT. Each

block is classified into one ofJ classes by maximizing the cod-
ing gain. All resulting “like-coefficient” sequences are quantized
using ECTCQ. In both coders, codebooks are optimized for dif-
ferent generalized Gaussian distributions. Codebook design uses a
modified version of the generalized Lloyd algorithm in a training-
sequence-based iterative scheme. Rate allocation is performed in
an optimal fashion by an iterative technique that uses the rate-
distortion performance of the various trellis-based quantizers.

2. ADAPTIVE HYPERSPECTRAL IMAGE CODERS

Consider the encoder configuration shown in Figure 1. Here,
the DPCM loop operates on entire images rather than on individual
sequences. Given an image,xn�1, the next image in the hyper-
spectral sequence can be estimated, and an “error image” can be
formed from the difference�n = xn � ~xnjn�1. The error image
(at each instant in time) is spatially correlated and can be quantized
using any image coding scheme. Note that the error image must
be decoded within the encoder loop so that the quantized image,
x̂n, can be constructed and used to predict the next image.

The prediction error images have much lower energy than the
original bands and can be subjected to very coarse quantization.
The bit rate chosen to encode each error image will be the asymp-
totic bit rate for the system. The first spectral band is encoded
and transmitted (as the initial conditions for DPCM) at a total rate
(including side information) ofR1 bits/pixel (bpp).

Testing of data obtained by the Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS) [3], revealed that the spectral corre-
lation coefficient,�, for any pixel in the hyperspectral image, is
approximately 0.95. Accordingly, this value of� was used in the
DPCM loop.

In the wavelet-based system, each error image is encoded us-
ing a scheme similar to that in [4]. The image is transformed using
the 2-D DWT. A 10-band octave decomposition is used. The block
size used for classification within each subband is adjusted so as
to correspond to16� 16 blocks in the error image. Each subband
is classified intoJ classes by maximizing the coding gain as dis-
cussed below. All10J sequences are normalized by dividing by
their respective standard deviations. The mean is subtracted from
the lowest frequency subband.

The total side information to be transmitted consists of the
mean of the lowest frequency subband and the standard deviations
of all 10J coefficient sequences. These quantities are quantized
using 16-bit uniform scalar quantizers for a total of(10J+1)�16
bits. The initial trellis state for each sequence must also be trans-
mitted, which (for 4-state trellises) equals20J bits. ForJ = 4,
the total side information consists of 736 bits. This corresponds
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Figure 1: Hyperspectral image encoder.

to � 0:0112 bpp for a256 � 256 image, and� 0:0028 bpp for
a 512 � 512 image. In addition, the classification maps for the
entire hyperspectral sequence are derived from the first spectral
band and thus contribute only� 0:00195 bits/pixel/band for a 40-
band sequence. The first spectral band is encoded and transmitted
(as the initial conditions for DPCM) at a total rate (including side
information) ofR1 bpp.

In the DCT-based system, each image is divided into non-
overlapping8 � 8 blocks and transformed using the 2-D DCT.
Prior to application of the DCT, each block is assigned to one ofJ
classes by maximizing the coding gain. For each class, DCT co-
efficients corresponding to the same frequency within each block
are grouped into sequences to be encoded using ECTCQ. All DCT
coefficients are normalized by subtracting their mean (only the se-
quences corresponding to the DC transform coefficients have non-
zero mean) and dividing by their respective standard deviations.
Since each class contains 64 DCT coefficient sequences, the total
number of sequences to be encoded would then be 64J .

The side information required to encode each error image (and
the first spectral band) consists of the means of theJ DC sequences
and the standard deviations of all 64J sequences. These quanti-
ties are quantized using 8-bit uniform scalar quantizers to yield
(64J + J) � 8 bits. In addition, the initial trellis state of each se-
quence requires 2 bits (for a 4-state trellis) which yields 128J bits.
The total side information is then 648J bits which corresponds to
1296/(256)2 = 0.0198 bpp for a256 � 256 image andJ = 2, or
2592/(256)2 = 0.0396 bpp forJ = 4. The first spectral band is
encoded and transmitted (as the initial condition for DPCM) at a
total rate (including side information) ofR1 bits/pixel. In addition,
the classification maps for the hyperspectral sequence must also be
transmitted. One map is used for every ten spectral bands. Each
map requires 1024 bits forJ = 2, or 2048 bits forJ = 4. Aver-
aged over ten spectral bands, this corresponds to 0.00156 bpp and
0.00313 bpp forJ = 2 andJ = 4, respectively.

The DWT or DCT coefficient sequences are assumed to have
various generalized Gaussian statistics. Accordingly, codebooks
were designed using sample sequences derived from generalized
Gaussian pseudo random number generators as discussed below.
Additionally, rate allocation is performed by using the algorithm
in [5].

The classification algorithm is similar to that presented in [4].
Consider a sourceX of lengthNL divided intoN blocks ofL
consecutive samples, with each block assigned to one ofJ classes.
If the samples from all blocks assigned to classi (1 � i � J)
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Figure 2: Adaptive image coder.

are grouped into sourceXi, the total number of blocks assigned
to sourceXi is Ni. Let �2i be the variance ofXi andpi be the
probability that a sample belongs toXi (i.e.,pi = Ni=N; 1 � i �
J). The algorithm in [4] is a pairwise maximization of coding gain
and is repeated here for convenience:

1. InitializeN1; N2; : : : ; NJ to satisfy
PJ

i=1
Ni = N;Ni >

0 for 1 � i � J . Letj = 1 andNprev = [N1; N2; : : : ; NJ ]
0.

2. FindN 0
j andN 0

j+1 such thatN 0
j + N 0

j+1 = Nj + Nj+1

and(�2j )
p0

j (�2j+1)
p0

j is minimized.

3. Nj = N 0
j andNj+1 = N 0

j+1.

4. j = j + 1. If j < J , go to step 2.

5. LetN = [N1; N2; : : : ; NJ ]
0. If N is equal toNprev, then

STOP. Otherwise,j = 1. Nprev = N . Go to step 2.

Here, the average mean squared energy of a block (i.e.,E =

(
PL

i=1
x2i )=L) is the criterion for classification.

2.1. Codebook Design

The probability distribution of each sequence to be encoded is
modeled by the so-calledGeneralized Gaussian Distribution(GGD),
whose probability density function (pdf) is given by

fX(x) =

�
��(�; �)

2�(1=�)

�
expf�[�(�; �)jxj]�g (1)

where

�(�; �) � ��1
�
�(3=�)

�(1=�)

�1=2
: (2)

The shape parameter� describes the exponential rate of decay and
� is the standard deviation of the associated random variable [6].
The gamma function�(�) is defined as

�(n) =

Z 1

0

e�xxn�1dx: (3)

Distributions corresponding to� = 1.0 and 2.0 are Laplacian and
Gaussian, respectively. Figure 3 shows generalized Gaussian pdfs
corresponding to� = 0.5, 1.0, 1.5, 2.0, and 2.5.

It can be shown that

E[X4] =

Z 1

�1

x4fX(x)dx = K�4 (4)

or

K =
E[X4]

�4
=

�(5=�)�(1=�)

�(3=�)2
(5)



Figure 3: Probability density function for generalized Gaussian
distributions with alpha values of 0.5, 1.0, 1.5, 2.0, and 2.5.

whereK is the fourth central moment, or Kurtosis. Recall that the
Kurtosis is a measure of the peakedness of a given distribution. If
a pdf is symmetric about its mean and is very flat in the vicinity of
its mean, the coefficient of Kurtosis is relatively small. Similarly,
a pdf that is peaked about its mean has a large Kurtosis value.

The sample Kurtosis of any sequence can be calculated easily
and used as a measure by which the distribution of the sequence
can be determined. Since there is a one-to-one mapping between
the shape parameter� andK, this mapping can be used to deter-
mine the appropriate� for a particular sequence.

Codebooks were designed for generalized Gaussian distribu-
tions with� values of 0.5, 0.75, 1.0, 1.5, and 2.0, using the algo-
rithm in [2]. It was shown in [2] that for the Gaussian distribution,
optimum codebooks do not yield significant MSE improvement
over uniform codebooks at rates greater than 2.5 bits/sample. Ex-
perimentation revealed that this is also true for� = 1.5 and� =
1.0. However, for� = 0:75, optimum codebooks are superior
up to 3.0 bits/sample, while for� = 0:5, optimum codebooks
should be used up to 3.5 bits/sample. Accordingly, for� values
of 2.0, 1.5, and 1.0, optimum codebooks were designed in one-
tenth bit increments up to 2.5 bits/sample, while for� = 0.75 and
� = 0.5, optimum codebooks were designed in one-tenth bit in-
crements up to 3.0 and 3.5 bits/sample, respectively. Thereafter,
uniform codebooks were designed in one-tenth bit increments up
to 12 bits/sample. Training sequences consisted of 100,000 sam-
ples derived from generalized Gaussian pseudo-random number
generators, each tuned to the appropriate� value.

2.2. Rate Allocation

Rate allocation is performed by using the algorithm presented in
[5]. The overall MSE incurred by encoding the coefficient se-
quences using ECTCQ at an average rate ofRs bits/coefficient
is represented by

Es =

KX
i=1

�i�
2
iEij(ri) (6)

where�2i is the variance of sequencei, Eij(ri) denotes the rate-
distortion performance of thejth quantizer (i.e., the quantizer cor-
responding to the Kurtosis of sequencei) at ri bits/sample,K is
the number of data sequences, and�i is a weighting coefficient
to account for the variability in sequence length. For a 10-band
decomposition andJ classes,K = 10J . For8 � 8 blocks andJ
classes,K = 64J .

The rate allocation vectorB = (r1; r2; : : : ; rK) is chosen
such thatEs is minimized, subject to an average rate constraint:

KX
i=1

�iri � Rs bits=coe�cient: (7)

It is shown in [5] that the solutionB�(r�1 ; r
�
2 ; : : : ; r

�
K) to the un-

constrained problem

min
B

(
KX
i=1

(�i�
2
iEij(ri) + ��iri)

)
(8)

minimizesEs subject to
PK

i=1
�iri �

PK

i=1
�ir

�
i . Thus, to find

a solution to the constrained problem of equations (6) and (7),
it suffices to find� such that the solution to equation (8) yieldsPK

i=1
�ir

�
i � Rs. Procedures for finding the appropriate� are

given in [5].
For a given�, the solution to the unconstrained problem is

obtained by minimizing each term of the sum in (8) separately. If
Sj is the set of allowable rates for thejth quantizer andr�i is the
ith component of the solution vectorB�, thenr�i solves

min
ri 2 Sj

f�i�
2
iEij(ri) + ��irig: (9)

3. RESULTS AND CONCLUSIONS

Coding simulations were performed using a 140-band, 8-bit
hyperspectral image sequence of Cuprite, Nevada, obtained by the
AVIRIS system. The bands were256 � 256 pixels and the per-
formance of the coder is reported using the peak signal-to-noise
ratio.

The first band in the sequence is quantized atR1 = 0:75
bits/pixel and is used as the initial condition for the spectral DPCM.
This rate was chosen so that the PSNR of the coded first band did
not significantly deviate from the average PSNR of the sequence,
when encoded at an asymptotic rateRs, of 0.10 bits/pixel/band
(b/p/b).

Figure 4 shows the PSNRs obtained by encoding bands 30
through 69 of the hyperspectral sequence using the DWT-based
system withJ = 4 classes, and the DCT-based system withJ =
2 classes. For comparison, Figure 4 also shows the performance
curves of the 3-D DCT and hybrid coders presented in [7], the
ECPTCQ coder presented in [8], and the robust wavelet coder pre-
sented in [9]. All coders were operated at an asymptotic bit rate1 of
Rs = 0:1 b/p/b. The average PSNR of the adaptive-DWT-coded
sequence is 41.24 dB, while the average PSNR of the adaptive-
DCT-coded sequence is 40.72 dB. The average PSNRs of the 3-D
DCT, hybrid, ECPTCQ, and robust wavelet systems are 40.75 dB,

1It should be noted that the asymptotic rates of the adaptive-DWT,
adaptive-DCT, and hybrid systems include the side information required
to encode each error image, since the contribution of the side information
to overall rate will remain constant regardless of sequence length.
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Figure 4: Performance of encoding hyperspectral sequence at
Rs = 0:10 b/p/b.

40.29 dB, 43.10 dB, and 40.13 dB, respectively. The dip in PSNR
around bands 56 and 57 is indicative of high sensor noise that is
clearly evident upon visual examination.

Despite having lower PSNR performance, the adaptive DCT
system gains advantages over the adaptive DWT coder in terms of
computational simplicity, and over the ECPTCQ system in terms
of memory requirements. The adaptive coders require only two
bands at once to encode an image sequence, while the ECPTCQ
system uses the entire transformed sequence. When compared to
the 3-D DCT coder, the adaptive DCT coder achieves comparable
PSNR performance while offering lower complexity and memory
requirements. Both adaptive coders outperform the DCT-based hy-
brid system, and the robust wavelet system. However, the robust
wavelet system is a non-entropy-coded design which gives it sev-
eral advantages as outlined in [9].

Figure 5 shows the overall coding rate (including all side infor-
mation) of the adaptive systems as a function of sequence length.
Note that for encoding short subsequences (i.e., less than 10 bands),
the overall rate of either system is dominated by the rate required
to code the first spectral band. The overall rate for encoding the
40-band sequence using either system is� 0.118 b/p/b whenRs

= 0.1 b/p/b. If all 140 bands were coded, the overall rate would be
0.106 b/p/b. It is evident that at least 73 bands are required such
that the overall rate is within 10% of the asymptotic rate (when
R1 = 0.75 bpp). Note that for short sequence lengths, the adap-
tive wavelet system exhibits slightly higher overall rate for a given
asymptotic rate.

Finally, we would like to note that many compression systems
discussed in the literature are image class dependent. That is, the
codebooks for each system must be optimized for a specific im-
age class. For example, codebooks optimized for urban imagery
may perform poorly when used on rural imagery. An alternative,
which is used by other systems, is to design one set of codebooks
using a wide variety of training data. Our systems do not utilize
image training data, but rather statistical models which are scene
independent, thus affording robustness to varying terrain.
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