
RAPID PROTOTYPING OF MULTIMEDIA CHIP SETS

Mohamed Ben-Romdhane Marius Vassiliou Lan-Rong Dung

Rockwell Science Center

1049 Camino Dos Rios

Thousand Oaks, CA 91360

ABSTRACT

We have developed a rapid prototyping environment
for Multimedia applications. The design environment is
based on e�cient hardware and software reuse, abstrac-
tion, design parameterization, and automation. The design
methodology maintains a exible boundary between hard-
ware and software by eliminating hardware fabrication from
the design loop. A reusable Hardware/Software library for
video compression has been developed to support the design
methodology. We present a case study involving the design
of an H.263-based video decoder. This case study illustrates
the e�ciency and exibility of the design methodology.

1. INTRODUCTION

This paper describes a rapid prototyping environment for
multimedia applications. The need for such a tool is trig-
gered by a shrinking time-to-market window and a rapidely
evolving and highly competitive market. The rapid pro-
totyping tool is based on virtual prototyping, abstraction,
design reuse, parameterization, and automation. Virtual
prototyping allows us to test and validate the system as a
simulatable model prior to fabrication. Abstraction is im-
plemented through encapsulation and reuse. It relieves the
designer from dealing with low level details. Design reuse is
considered at the functional level. It provides ease-of-use
and contributes signi�cantly to the shortening of design
turnaround times. Parameterization introduces the exi-
bility required for retargeting reusable components and/or
design architectures to a change in the speci�cations. Au-
tomation is introduced, when possible, to help shorten the
design process and lessen the design complexity, and to as-
sist in investigating a larger number of design alternatives.

2. OVERVIEW OF DESIGN METHODOLOGY

The design methodology discussed here consists of four ab-
straction Levels: (1) Algorithm Development, (2) Perfor-
mance Modeling, (3) Virtual Prototyping, and (4) Low-level
Implementation. Figure 1 illustrates these design phases.
We have added Levels 2 and 3 to our conventional de-
sign methodology in order to bridge the gap that exists
between Algorithm Development and Low-level Implemen-
tation. The design methodology begins at the Algorithm
Development level. Here, the performance of the target
algorithm is validated. The algorithm is represented as a

Fixed-point Implementation

C/VHDL/Assembly
ASIC system simulation

VHDL/Gate/Assembly

HW/SW Co-Simulation

System Simulation/Emulation

Post Synthesis

Low-Level
Implementation

Modeling
Performance

Algorithm
Development

High Level
Algorithm
Performance

SNR, BER

HW/SW Partitioning
ArchitectureCommunication

Accurate

Data Accurate

Data and
Communication

C/VHDL

Accurate

Level-3

Level-2

Level-4

C language

Virtual
Prototyping

Level-1

Figure 1: General View of the Design Methodology

block diagram of communicating Macro-Blocks (Software
Tasks) written in C. The next design phase, Performance
Modeling, benchmarks the execution of the algorithm over
a set of new and existing hardware architectures. This de-
sign phase assists the designer in making early implemen-
tation decisions such as: Hardware/Software partitioning,
choice of processor, memory type and size, and communi-
cation protocol. Functionality re�nement and implementa-
tion issues (i.e., Hardware/Software Cosimulation, Fixed-
point optimization) are addressed in the subsequent design
stage, Virtual Prototyping. This abstraction level, which is
the main focus of this paper, captures the necessary detail
about the system, and validates its implementation prior
to fabrication. By eliminating hardware fabrication from
the design loop, Virtual Prototyping maintains a exible
boundary between hardware and software. This results in
an e�cient Hardware/Software integration that can easily
and quickly accommodate late design changes. The �nal
design phase before fabrication is the Low-Level Implemen-
tation phase. This is the post synthesis stage where the �nal
validation of the system is done through gate-level simula-
tion and emulation.

3. PERFORMANCE MODELING

This is a front-end design phase that maps algorithms to
candidate architectures, and allows early decisions about
architecture tradeo�s, design feasibility, validation of archi-
tectural concepts, and implementation details. This design
phase is described in detail in [2]; This section provides only
a brief outline. Experience shows that Performance Mod-
eling can determine over 70% of the �nal product, and its
manufacturing and maintenance costs. It allows designers
to start with an executable speci�cation and derive rapid
architecture exploration, requiring the least amount of func-
tionality. This is made possible by a performance modeling
library of Processors, ASICs, Memory modules, DMA units,
and communications components (buses, PCI, VME, etc.).
In the Performance Modeling phase, the designer can ef-
fect quick architecture exploration, Hardware/Software par-
titioning, communication modeling and tuning, and task
scheduling.

The Performance Modeling phase captures system per-
formance results, such as:

� processor utilization,

� memory size,

� bus congestion and activity,

� interrupt overhead,

� Gantt chart,

� e�ciency of partitioning and scheduling.

This design phase helps designers make rapid architec-
tural tradeo�s and decisions about the processor of choice,
the tasks that will run in hardware versus those that will
run in software, the memory size, the DMA speed, the
bus protocol, and other important implementation details.
The current practice for performance evaluation is a pen-
and-paper approach that can take up to several months
without providing the required accuracy or tradeo� exi-
bility. Also, a pen-and-paper approach, cannot predict is-
sues such as interrupt and bus arbitration overhead. Our
proposed methodology runs communication-accurate simu-
lations with the least amount of functionality. It provides
a valuable and accurate insight to architectural exploration
and hardware/software partitioning.

4. VIRTUAL PROTOTYPING

The Virtual Prototyping design phase relies on core reuse of
hardware and software blocks. We have developed a hard-
ware and a software library of reusable multimedia cores to
support the Virtual Prototyping Engine (VPE) described
in Figure 2. Using the VPE, a Virtual Prototype of the
application is quickly assembled by pulling reusable blocks
from the available libraries. The hardware library is writ-
ten in RTL-VHDL, while the Software library is in C. The
partitioning of hardware and software tasks is derived from
the previous design stage: Performance Modeling. Because
our main goal is to develop Multimedia Chip Sets, the focus
of the VPE is to: (1) exercise the hardware (Chip Sets) in
the system, (2) tailor its functionality and datapath to the
speci�cations of the application, (3) derive its exact cost,

VHDL

Hardware Library
 VHDL

VHDLCompiler
Wraparound

 C
Software Library

Virtual Prototyping Engine

Simulation and Cost Estimation

Production

Virtual Prototype

VHDL wraparound

C

Interface

U
pd

at
e

So
ft

w
ar

e
L

ib
ra

ry

R
ep

ar
tit

io
n

U
pd

at
e

H
ar

dw
ar

e
L

ib
ra

ry

R
ep

ar
tit

io
n

Figure 2: Virtual Prototyping Engine (VPE)

and �nally (4) to synthesize it into Application Speci�c Inte-
grated Circuits (ASICs). The simulation of a Virtual Pro-
totype is run under a uni�ed VHDL simulator. Software
tasks written in C are automatically wrapped around in
VHDL to run under the same VHDL simulator (e.g. Quick-
HDL). The wraparound compiler uses the foreign language
interface of the VHDL simulator. This approach results
in fast Hardware/Software (VHDL/C) co-simulation. Af-
ter verifying and tuning the Virtual Prototype to meet the
performance/cost speci�ctions, the hardware tasks are syn-
thesized and the software tasks are compiled to the target
processor.

4.1. REUSABLE LIBRARY

The hardware library is designed to take advantage of those
VHDL features that make reuse easy without sacri�cing
performance. The reusable components are designed at the
RTL level with a parameterization of all datapath aspects.
Reusable components are characterized by their domain,
structure, and feature. The domain speci�es the target
algorithm, the structure de�nes the architecture, and the
feature states the variations of implementations for a �xed
domain and structure [1].

The reusable library is designed to quickly prototype
video compression codecs. In order to eliminate errors due
to code modi�cation by designers, the components are con-
sidered as black boxes accessed only through their entities.
The library also provides the necessary information about
the functionality, the implementation cost, and the use of
the components in the system. Figure 3 illustrates an ex-
ample of a parameterized ASIC core. An original image
is run through a parameterized Discrete Cosine Transform
(DCT) model. The transformed image is then decode by a
parameterized Inverse Discrete Cosine Transform (IDCT)
model. The DCT/IDCT models are then tuned to opti-
mize the �xed-point perfomance of the algorithm. Figure 3
shows the improvement in quality of the decoded picture
when the data precision is increased from 6 to 8 bits. The
DCT/IDCT models can also be tuned for coe�cient, ac-
cumulation, scaling, and internal RAM precisions. The li-
brary also provides a variety of DCT/IDCT architectures
for a wide range of image and video compression algorithms.

Figure 4 illustrates the architecture of a high perfor-

Original

Decoded/6-bit

Decoded/8-bit

LAYOUT:
15,000 Gates

Power 0.2mW/20MHz Clock

Synthesizable

Parameterized

DCT Model

(RTL-VHDL)

Synthesizable

Parameterized

IDCT Model

(RTL-VHDL)

SYNTHESIS

2D DCT/80 clock cycles

Figure 3: Parameterized ASIC Cores

mance DCT reusable component that executes a two di-
mensional 8x8 DCT block in 80 clock cycles. The original
8x8 DCT matrix is decomposed into two 4x4 matrices (M1
and M2). The architecture is based on three units: Execu-
tion Unit (EU), RAM Unit (RU), and Address Generator
Unit (AGU). The computation of the DCT is executed in
two phases. In the �rst phase, the data are read in pairs
from the input ports and fed to the pipelined EU (a new
pair of data is accepted every clock cycle). The output
of the EU that implements matrix multiplications M1 and
M2 is written to the 2-ported RU (based on the WRITE
addresses generated by the AGU). In the second phase, the
data stored in the RU are read in pairs (based on the READ
addresses generated by the AGU) and recycled to the EU.
The output of the EU is then directed to the output ports
of the chip to yield the DCT of the original data. This DCT
component can be tailored to di�erent applications through
its tunable datapath precision.

b d e g
d -g -b -e
c -b g d
g -e d -b

RAM

Dual

f -c c -f
a -a -a a

Port

a a a a
c f -f -c

M1=

M2=

In2

Out1

Out2

In1

Figure 4: DCT Architecture

Inverse ZigZag
Inverse Quantizer
IDCT

Bit

RLD
FLD
VLD

Stream

Decoded 8

8I/P

Frame_num

MB_num

Block_n

mvx

mvy

residue_flag

...01101...

quant

Header
Decoding

Frame Reconstruction
 and

Motion Compensation

Software

Hardware

Block Decoding

Decoder

Input

Output

Decoder

Figure 5: Task partitioning for the H.263 decoder imple-
mentation.

4.2. DESIGN ENVIRONMENT & CASE STUDY

Figure 6 illustrates the VPE. We used this design environ-
ment to quickly prototype a variety of video compression
algorithms. The case study considered in this section illus-
trates the prototyping of a video decoder based on the H.263
standard. The partitioning of the decoder is illustrated by
Figure 5, and is derived from the Performance Modeling de-
sign phase (see Figure 1). The block decoding tasks are allo-
cated to hardware due to their computational intensity. On
the other hand, H.263 protocol oriented tasks are allocated
to software. The VPE of Figure 6 provides a con�gurable
plug-and-play environment to prototype the H.263 video
decoder based on the partitioning of Figure 5. The Graphi-
cal User Interface provides a exible way to choose the test
bench and to set the hardware and software design parame-
ters. Using this exibility, one can quickly tune the Virtual
Prototype to investigate performance-cost trade-o�s. Fig-
ure 6 shows the improved quality of the decoded sequence
on the right. This improvement is obtained at the cost of
increasing the internal precision of the decoder by 2 bits,
and decreasing the scaling factor inside the DCT by a single
bit.

5. SUMMARY

This paper describes a rapid prototyping environment for
Multimedia chip sets. The design methodology relies on
e�cient hardware and software reuse, abstraction, design
parameterization, and automation. The design methodol-
ogy eliminates hardware fabrication from the design loop
and provides a exible environment to model and tune Vir-
tual Prototypes. A reusable Hardware/Software library
for video compression was developed to support the de-
sign methodology. The design of a fully-functional video

Figure 6: Rapid Prototyping Environment

coder/decoder within the proposed environment has demon-
strated the e�ciency and exibility of the approach.

6. REFERENCES

1. Mohamed Ben-Romdhane, Vijay Madisetti, and John Hines,
\Quick-Turnaround ASIC Design in VHDL, Core-Based Be-
havioral Synthesis", Kluwer Academic Publishers (KAP),
June 1996.

2. Lan-Rong Dung, Mohamed Ben-Romdhane, and Marius
Vassiliou, \IP-Based Architecture Exploration," DesignCon
99, Feb. 1-4, Santa Clara, CA.

