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ABSTRACT

In this paper, we show that recovery of a function from its
averages over squares in the plane is closely related to a prob-
lem of recovery of bandlimited functions from samples on
unions of regular lattices. We use this observation to con-
struct explicit solutions to the Bezout equation which can
be easily implemented in software. We also show that these
sampling results give a new proof of the “three squares the-
orem” which says that a function in the plane can be recov-
ered from its averages on translates of three squares oriented
parallel to the coordinate axes whose sidelengths are pair-
wise irrationally related. Other proofs of this theorem and
construction of solution to the Bezout equation rely on inter-
polation methods in the theory of functions of one and sev-
eral complex variables. Our sampling technique gives much
simpler solutions especially in higher dimensions.

1. INTRODUCTION

The specific problem we address is the following. Given a
collection of numbers 0 < r1 < r2 < � � � < rm, can
we find compactly supported distributions �1; �2; : : : ; �m
onRd which satisfy

mX
i=1

�i � �i = �; (1)

where each �i is the characteristic function of a cube inRd?
This problem will be referred to as the multisensor deconvo-
lution problem or MDP.

The initial motivation for considering this problem is for
its potential applications to signal and image recovery and
enhancement [5]. In particular, solving (1) has the following
interpretation. Given a d–dimensional signal or image, f ,
and its corresponding measured data fsigmi=1, where si =
f � �i, we can recover f from fsig

m
i=1 by

mX
i=1

si � �i =
mX
i=1

(f � �i) � �i =
mX
i=1

f � (�i � �i)

= f �
mX
i=1

�i � �i = f � � = f: (2)

Clearly, physical limitations and numerical instabilities pre-
vent the actual construction of an optical system with perfect
reconstruction. However, it is believed that real increases in
resolutioncan be obtained through the multisensor approach,
that is, that it is possible to stably recover fine detail in the
original signal f which is impossible to recover stably from
each of the si.

In fact, if (1) can be solved with compactly supported de-
convolvers, then recovery of f from fsig

m
i=1 is local in the

followingsense. Recovery of f at a pointx0 is possible from
knowledge of each si on some compact set depending on i

and containing x0. Specifically, (eh(x) = h(�x) here and
below),

f(x0) = hf; �x0�i =

�
��x0f;

mX
i=1

�i � �i

�

=
mX
i=1

h��x0f � �i; �ii =
mX
i=1

h��x0si; �ii: (3)

Thus, f(x0) can be recovered from knowledge of si on the
compact set x0 + supp �i.

A theorem of Hörmander [10] asserts that equation (1)
has a solution consisting of compactly supported distribu-
tions if and only if the following condition, known as the
strongly coprime condition is satisfied. For some constants
A; B; N > 0,

mX
i=1

j b�i(z)j � A(1 + jzj)�N e�Bj=zj (4)

for all z 2 Cd. If we require that the �i be characteristic
functions of cubes in Rd, i.e., �i = �

[�ri;ri ]d , it follows
from the work of Petersen and Meisters [11] that (4) is satis-
fied whenever m � d+ 1 and ri=rj is poorly approximated
by rationals, that is, whenever there exist numbers C; N >
0 such that for all integers p; q, jri=rj � (p=q)j � Cjqj�N .



While Hörmander’s Theorem gives necessary and sufficient
conditionsunder which compactly supported solutions to (1)
exist, it gives no useful formula for constructing such solu-
tions. This problem has been explored in a variety of con-
texts. See for example [4], [3], [5], and [6] as well as [7] for
an expository overview.

2. SOLVING MDP WITHOUT COPRIMALITY

We can remove the assumption of coprimality and still solve
the MDP in a slightly weaker sense. The following theo-
rem is known as the “three squares theorem.” It asserts that
given three irrationally related positive numbers r1, r2, r3,
any functionL2 in the plane is completely determined by its
averages on all squares of side r1, r2 or r3 with sides parallel
to the coordinate axes.

Theorem 1 ([9], [1]) Let 0 < r1 < � � � < rm, let m =
d+ 1. Then the following are equivalent.

(a) The collection frigmi=1 satisfies ri=rj is irrational for
all i 6= j.

(b) If for 1 � i � m, f 2 L2(Rd) satisfies

f � �[�ri;ri ]d � 0

then f � 0.

A local version of Theorem 1, known as the local three
squares theorem, also holds. This theorem asserts that given
three irrationallyrelated positive numbers r1, r2, r3, any func-
tion locallyL2 in the plane is completely determined on any
square of side R � r1+r2+r3 with sides parallel to the co-
ordinate axes by its averages on all squares of side r1, r2 or
r3 with sides parallel to the coordinate axes which are com-
pletely contained within the larger square.

Theorem 2 ([9], [2]) Let 0 < r1 < � � � < rm, let m = d+
1, and let R =

Pm
i=1 ri. Then the following are equivalent.

(a) The collection frigmi=1 satisfies ri=rj is irrational for
i 6= j.

(b) If for 1 � i � m, f 2 L2[�R;R]d satisfies

f � �[�ri;ri ]d = 0 on [�R+ ri; R� ri]
d

then f � 0.

Note that in Theorems 1 and 2, the only assumption made
about the sidelengths of the cubes is that they are irrationally
related. The strongly coprime assumption is not made. The
cost is that we know only that the function is completely de-
termined and we have no explicit formula such as (3) for its
recovery.

It will be the goal of this paper to show that sampling the-
ory can be used very effectively to recover a function locally
from its averages and that solutions in higher dimensions are
essentially no more complicated that one dimensional solu-
tions.

3. SAMPLING AND THE MDP

It has been well established in several papers [12], [7], [13],
[14], [9], [8] that the theory of sampling of bandlimited func-
tionsand solvingconvolutionequations such as (1) are closely
related. In this section, we will give a brief summary of this
connection and refer the reader to the literature for more de-
tails.

Consider the case d = 1. Taking the Fourier transform
of (1) gives

mX
i=1

b�i(�)b�i(�) = 1: (5)

Let � be a permutation of the set f1; 2; : : : ; mg with the
property that �(i) 6= i for all i. We seek solutions to (1)
of the form

b�i() = df�(i)() Y
j 6=i;�(i)

c�j(): (6)

Substituting (6) into (5) and rearranging terms gives

mX
i=1

bfi()Y
j 6=i

c�j() = 1: (7)

Solving (5) and hence (1) is equivalent to finding distribu-
tionsfi which satisfy (7). Note also that any solutionsf�igmi=1
obtained in this way have the form �i = f�(i)�pi where pi is
an (m�2)–fold convolution product of characteristic func-
tions of intervals.

If we let �k be the zero set ofc�k then clearly

�k = fn=2rk:n 2 Z n f0gg: (8)

It is also clear that if � 2 �k then equation (7) reduces to

bfk(�)Y
j 6=k

c�j(�) = 1

since the product vanishes whenever i 6= k. Thus, for � 2
�k, fk must satisfy

bfk(�) = �Y
j 6=k

c�j(�)��1:
Because the ratios ri=rj are irrational, bfk(�) has polynomial
growth in �. We would like to assert that

fk =

�
ck0 +

X
�2�k

bfk(�) e2�i�x
�
�
[�rk;rk]



for some appropriate choice of ck0 but because of the polyno-
mial growth of bfk(�) it is not clear that this sum and product
make sense.

In order to make sense of the above sum, we choose a
function ' 2 C1c (R) with support in the interval [�R;R]
where R =

Pm

i=1 ri and define

fk;' =

�b'(0)ck0 + X
�2�k

b'(�) bfk(�) e2�i�x
�
�
[�rk ;rk ] (9)

which is a well–defined function. With �i;' = f�(i);' � pi,
and with the constants fck0g

m
k=1 chosen appropriately, it fol-

lows that the equation

mX
i=1

b�i()d�i;'() = b'() (10)

is satisfied on the set � = [mi=1�i[f0g. It is easy to see that
both sides of (10) are the Fourier transforms of Cm�2 func-
tions supported in the interval [�R;R]. Thus, the question
of whether f�i;'gmi=1 satsifies (10) for all  reduces to the
question of whether a Cm�2 function supported on [�R;R]
is completely determined by the samples of its Fourier trans-
form on �. The answer to this question is given in the fol-
lowing theorem.

Theorem 3 (cf. [13], Theorem 3.2) Let 0 < r1 < r2 <
� � � < rm be such that m � 2, and ri=rj is irrational if
i 6= j, let �i be given by (8) and let R =

Pm
i=1 ri. If F 2

Cm�2(R) with suppF � [�R;R] satisfies bF (�) = 0 for
all � 2 [mi=1�i [ f0g. Then F (x) = 0 on [�R;R].

Finally, if we take ' to be the elements of an approxi-
mate identity, and let ' ! � (as a distribution), then it is
possible to show that the limits lim'!� fk;' make sense as
distributions and in fact converge to fk for each k. Con-
sequently, it can be shown that the functions �i;' converge
to well–defined, compactly supported distributions�i which
satisfy (1). Hence, sampling theory can be used to find ex-
plicit solutions to (1).

4. SOLUTIONS TO THE MDP WITHOUT
COPRIMALITY

It is instructive to consider where the assumption of copri-
mality was used in the previous section. A few momment
reflection reveals that the assumption of coprimality guaran-
tees that the coefficients

bfk(�) =
�Y
j 6=k

c�j(�)
��1

have polynomial growth in �. This fact guarantees that the
coefficients fk;'(�) = b'(�) bfk(�) decay rapidly since the

numbers b'(�) decay faster than any polynomial in�. There-
fore, we can conclude that the sum in (9) converges and that
fk;' is well–defined.

A different way to force convergence in (9) is to consider
functions ' for which b'(�) = 0 for all but finitely many
� 2 �. In this case, the sums defining fk;' will converge
regardless of the growth at infinity of the coefficients bfk(�),
and hence the strongly coprime condition can be ignored. In
this case, the inner products hf; 'i can be computed via

hf; 'i = f � e'(0) = mX
i=1

(f � �i) �g�i;'(0) = mX
i=1

hsi; �i;'i:

(11)
If the set of ' whose Fourier transforms vanish on all but
finitely many points of� form a complete set, then f is com-
pletely determined by the data fsigmi=1. This suggests a strat-
egy for solving the MDP without coprimality.

We start with the following result which was proved in
[13] and which is closely related to Theorem 3. The remain-
der of this section is taken essentially from [9].

Theorem 4 ([13], Theorem 3.1) Let 0 < r1 < r2 < � � � <
rm be such that ri=rj is irrational if i 6= j, let �i be given
by (8) and let R =

Pm

i=1 ri. Suppose that F 2 L2[�R;R]
satisfies,

(a) bF (�) = 0, for all � 2 [mi=1�i,

(b) bF (j)(0) = 0, for j = 0; 1; : : : ; m � 1.

Then F (x) = 0 a.e. on [�R;R].
Equivalently, the collection

�� = fe2�i�xg�2[m
i=1

�i [ f1; x; : : : ; x
m�1g

is complete in L2[�R;R].

It turns out that the set �� is minimal inL2[�R;R], that
is, it has a biorthogonal sequence. To see why this is true,
define for j = 0; : : : ; m � 1 the functions gj 2 L2(bR) by

gj(x) =
tj

j!

mY
k=1

sin(2�rkx)

2�rkx
: (12)

Let f0;m�1 = gm�1 and define f0;j recursively for j = m�
2 down to j = 0 by

f0;j(x) = gj(x) +
m�1X
`=j+1

�
d`

dx`
gj(0)

�
f0;`(x): (13)

For � = n=2rj 2 �j, define g� 2 L2(bR) by

g�(x) =
sin(2�rj(x� �))

2�rj(x� �)

Y
k 6=j

sin(2�rkx)

2�rkxY
k 6=j

sin(2�rk�)

2�rk�

(14)



and define f� by

f�(x) = g�(x)�
m�1X
`=0

�
d`

dx`
g�(0)

�
f0;`(x): (15)

The following theorem holds.

Theorem 5 (cf. [13], Proposition 3.1) Let dF0;j = f0;j andcF� = f� and define

F = fF�:� 2 [mi=1�ig [ fF0;j: j = 0; : : : ; m � 1g:

Then F � L2[�R;R] and F is biorthogonal to ��.

Theorem 5 followsfrom the observation that (a) f0;j(�) =

0 for 0 � j � m � 1 and � 2 �, and dk

dtk
f0;j(0) = �j;k for

0 � j; k � m � 1 and (b) f�(�0) = ��;�0 for �; �0 2 �,

and dk

dtk
f�(0) = 0 for 0 � k � m � 1.

Thus, for every ' 2 F , fk;' defined by (9) is well–
defined and supported in [�rk; rk]. Consequently, the func-
tions �i;' are well–defined functions supported in the inter-
val [�R+ ri; R � ri]. It follows that calculating hf; 'i by
(11) requires knowledge of si only on [�R + ri; R � ri].
It remains to show that in fact a function f 2 L2[�R;R]
is completely determined by the inner products hf; 'i with
' 2 F . That this is true is proved in [9] and relies heavily
on a result of Young [15] which states that a set biorthogonal
to an exact sequence of exponentials is always complete on
L2(��; �).

Combining the above observations we arrive at a proof
of one direction of Theorem 2 in one dimension. General-
izing to higher dimensions is essentially trivial and relies on
the observation that d–fold tensor products of complete sets
in L2[�R;R] are complete sets in L2[�R;R]d. The other
direction is also not difficult and details can be found in [9].
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