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ABSTRACT

In this paper, we show that recovery of afunction from its
averagesover squaresintheplaneisclosdly related toaprob-
lem of recovery of bandlimited functions from samples on
unions of regular lattices. We use this observation to con-
struct explicit solutions to the Bezout equation which can
be easily implemented in software. We also show that these
sampling results give a new proof of the “three squares the-
orem” which says that a function in the plane can be recov-
ered fromitsaverages on trand ates of three squares oriented
paralel to the coordinate axes whose sidelengths are pair-
wise irrationaly related. Other proofs of thistheorem and
construction of solutionto the Bezout equation rely oninter-
polation methods in the theory of functions of one and sev-
eral complex variables. Our sampling technique givesmuch
simpler solutionsespecialy in higher dimensions.

1. INTRODUCTION

The specific problem we address is the following. Given a

collection of numbers0 < r; < rs < -+ < 7y, CAN
we find compactly supported distributionsvy, v, ..., vy
on R4 which satisfy
> pixvi =4, (1)
i=1

where each y; isthe characteristic function of acubein R4?
Thisproblemwill bereferred to as the multi sensor deconvo-
[ution problem or MDP.

Theinitial motivationfor considering thisproblemisfor
its potential applications to signa and image recovery and
enhancement [5]. In particular, solving (1) hasthefollowing
interpretation. Given a d—dimensiona signa or image, f,
and its corresponding measured data {s; }",, where s; =
£ p;, wecan recover f from{s;}72, by

m m m

Zsi*yi = Z(f*ﬂi)*Vi:Zf*(ﬂi*Vi)

i=1 i=1 i=1

= f*Zpi*Vi:f*(sIf. 2
i=1

Clearly, physical limitationsand numerical instabilitiespre-
vent theactual construction of an optical system with perfect
reconstruction. However, itisbelieved that real increasesin
resol ution can be obtai ned through the multi sensor approach,
that is, that it is possible to stably recover fine detail in the
origina signa f whichisimpossibleto recover stably from
each of the s;.

Infact, if (1) can be solved with compactly supported de-
convolvers, then recovery of f from {s;};2, islocal inthe
followingsense. Recovery of f a apoint«, ispossiblefrom
knowledge of each s, on some compact set depending on ¢
and containing . Specifically, (h(x) = h(—z) here and
below),

f(l’o) = <f’ Tl‘06> = <T—xufa Z/’LZ * Vi>
i=1

S oo *pi vy =Y (r_pysisvi). (3)
i=1 i

i=1

Thus, f(x0) can be recovered from knowledge of s; on the
compact set zg + supp v;.

A theorem of Hormander [10] asserts that equation (1)
has a solution consisting of compactly supported distribu-
tions if and only if the following condition, known as the
strongly coprime condition is satisfied. For some constants
A, B, N >0,

m

D ()] = AL+ =)~ e P19 4)

i=1

foral » € C?. If we require that the y; be characteristic
functions of cubesin R?, i.e, i = X[_,, ,,j«, it follows
fromthework of Petersen and Meisters[11] that (4) issatis
fied whenever m > d+ 1 and r; /r; is poorly approximated
by rationals, that is, whenever there exist numbers C', N >
0 such that for al integersp, ¢, |7;/r; — (p/q)] > Clq|=".



While Hormander’s Theorem gives necessary and sufficient
conditionsunder which compactly supported solutionsto (1)
exig, it gives no useful formulafor constructing such solu-
tions. This problem has been explored in a variety of con-
texts. See for example[4], [3], [5], and [6] aswell as[7] for
an expository overview.

2. SOLVING MDPWITHOUT COPRIMALITY

We can remove the assumption of coprimality and till solve
the MDP in a dlightly weaker sense. The following theo-
rem is known as the “three squares theorem.” It asserts that
given threeirrationally related positive numbers ry, rs, r3,
any function L? intheplaneis completely determined by its
averagesonal squaresof sidery, r, or rs withsidesparalel
to the coordinate axes.

Theorem 1 ([9], [1]) Let0 < 1 < ---
d + 1. Then the following are equivalent.

<y, letm =

(8 Thecollection {r; }72, satisfiesr; /r; isirrational for
alli #j.

(b) Iffor 1 <i < m, f € L?(R%) satisfies
f * X[_r“h]d =0
then f = 0.

A loca version of Theorem 1, known as the local three
sguares theorem, also holds. Thistheorem assertsthat given
threeirrationally related positivenumbersr, r5, r3, any func-
tionlocally L? inthe planeis completely determined on any
squareof side R > 1 +r; + 3 with sidesparalle to the co-
ordinate axes by itsaverages on all squares of sidery, r» or
r3 with sides parallel to the coordinate axes which are com-
pletely contained within the larger square.

Theorem 2 ([9],[2) Lt 0 < 7y < - < rpp, &M = d +
1,andlet R = 3", r;. Thenthefollowingare equivalent.

(a8 Thecollection {r; }72, satisfiesr; /r; isirrational for
i3]
(b) Iffor1 <i <m, f € L?[-R, R]* satisfies
F* Xy pge =00n[-R+r; R— 7]
then f = 0.

Notethat in Theorems 1 and 2, theonly assumption made
about the sidelengths of the cubesisthat they areirrationaly
related. The strongly coprime assumption is not made. The
cost isthat we know only that the functionis compl etely de-
termined and we have no explicit formulasuch as (3) for its
recovery.

It will bethegoa of thispaper to show that sampling the-
ory can beused very effectively torecover afunctionlocally
fromitsaverages and that solutionsin higher dimensionsare
essentially no more complicated that one dimensional solu-
tions.

3. SAMPLING AND THE MDP

It has been well established in several papers[12], [7], [13],
[14],19], [8] that thetheory of sampling of bandlimitedfunc-
tionsand solving convol utionequationssuch as(1) areclosely
related. Inthissection, wewill give abrief summary of this
connection and refer the reader to the literature for more de-
tails.

Consider the case d = 1. Taking the Fourier transform
of (1) gives

D7) = 1. (5)

Let o be a permutation of the set {1, 2, ..., m} with the
property that o(¢) # ¢ for all . We seek solutionsto (1)
of theform

5 =Fw@) [I B (6)
J#i,o(i)
Substituting (6) into (5) and rearranging terms gives

Y EIImm =1 (7)
i=1 2]
Solving (5) and hence (1) is equivalent to finding distribu-
tions f; which satisfy (7). Noteasothat any solutions{v; }/ ,
obtainedin thisway havetheformy; = f, ;) *p; wherep; is
an (m — 2)—fold convolution product of characteristic func-
tionsof intervals.
If welet A, bethe zero set of i, then clearly

A ={n/2rp:n € Z\ {0}}. (8)

Itisalsoclear that if A € A, then equation (7) reduces to
EOITmo =1
i#k

since the product vanishes whenever i # k. Thus, for A €
Ag, fk must Satley

fy = (1}?@))

Becausetheratiosr; /r; areirrational, f;, (\) haspolynomial
growthin A. Wewould liketo assert that

fk‘ — (Cé: + Z ﬁ(A) ezﬂiAx) X[—Tkﬂ‘k]

AEAL



for some appropriate choice of £ but because of the polyno-
mial growth of f;, (A) itisnot clear that thissum and product
make sense.

In order to make sense of the above sum, we choose a
function ¢ € C2°(R) with support in theinterval [— R, R]
where R = 3~ | r; and define

fow = (¢<o>c’a+ DRI

AEAL

62772')\17) S (9)

which is a well—defined function. With v; , = fo(i) o * pi,
and with the constants {cf }'™_, chosen appropriately, it fol-
lows that the equation

m

Y AT = 8(9) (10)

i=1

issatisfiedontheset A = U2, A;U{0}. Itiseasy toseethat
both sides of (10) are the Fourier transforms of ¢~ 2 func-
tions supported in theinterva [— R, R]. Thus, the question
of whether {v; ,}/2, satsifies (10) for al ~ reduces to the
question of whether aC™~2 function supported on [ R, R]
iscompletely determined by the samples of itsFourier trans-
formon A. The answer to this question is given in the fol-
lowing theorem.

Theorem 3 (cf. [13], Theorem 3.2) Let 0 < r1 < ry <

- < 7y besuchthat m > 2, and r;/r; isirrational if
i # j,let A; begivenby (8)andlet R = > 1" i If F €
C™=2(R) withsupp F C [—R, R] satisfies F(\) = 0 for
al A eum A, U{0}. Then F'(z) = 0 on[-R, R].

Finally, if we take ¢ to be the elements of an approxi-
mate identity, and let ¢ — ¢ (as adistribution), then it is
possible to show that the limitslim,_,5 fx , make sense as
distributions and in fact converge to f; for each k. Con-
sequently, it can be shown that the functions v; , converge
towell-defined, compactly supported distributionsy; which
satisfy (1). Hence, sampling theory can be used to find ex-
plicit solutionsto (1).

4. SOLUTIONSTO THE MDP WITHOUT
COPRIMALITY

It isinstructive to consider where the assumption of copri-
mality was used in the previous section. A few momment
reflection reveal s that the assumption of coprimality guaran-
tees that the coefficients

- (1} ) h

have polynomial growthin A. Thisfact guarantees that the
coefficients fi ,(A) = @(A)fx(A) decay rapidly since the

numbers(A) decay faster than any polynomialin A. There-
fore, we can conclude that the sumin (9) converges and that
Ix o iswell—defined.

A different way toforce convergencein (9) isto consider
functions ¢ for which &(A) = 0 for al but finitely many
A € A. Inthis case, the sums defining fi. , will converge
regardless of thegrowth at infinity of the coefficients f; (A),
and hence the strongly coprime condition can beignored. In
this case, the inner products ( f, ) can be computed via

= (xp) xvig(0) = Z<5i’ Vi)

i=1 (11)
If the set of v whose Fourier transforms vanish on all but
finitely many pointsof A form acompl eteset, then fiscom-
pletely determined by thedata {s; }72 ;. Thissuggestsastrat-
egy for solving the MDP without coprl mality.
We start with the following result which was proved in
[13] and whichisclosaly related to Theorem 3. Theremain-
der of thissection istaken essentialy from[9].

(fr9) =1 *(0)

Theorem 4 ([13], Theorem3.) Let0 <7 <71y < -+ <
rm besuchthat r;/r; isirrational if ¢ # j, let A; be given
by (8)andlet R = 5", r;. Supposethat F' € L*[—R, R]
satisfies,

@ F()\) =0,forall A e U A,
(b) FW0)=0,forj=0,1,...,m—1.

Then F(z) = 0 a.e. on[-R, R].
Equivalently, the collection

A* = {627Ti>\x})\euzn:11\l U {1, T, ...

iscompletein L?[—R, R].

L™

It turnsout that the set A* isminimal in L?[— R, R], that
is, it has a bi orthogonal sequence. To see why thls istrue,

definefor j = 0, — 1thefunctionsg; € L?(R) by
H sin(2mryx) . (12)
2rrpe

Let fo,m—1 = gm—1 anddefine f; ; recursively for j = m—
2 downtoj = 0 by

hs@) =0+ 3 (590)) foele) @3
e=j+1

For A = n/2r; € A;, define gy € L2(R) by

sin(2mry )

sin(27r;(z — X)) k#j 2rrga

2rr;(z — A) H sin(2mryA)
2Trp A

ga(x) = (14

k#j



and define f, by

m—1

R == Y (400) ful). @9

£=0

The following theorem holds.

Theorem 5 (cf. [13], Proposition 3.1) Let £, ; = fo ; and
I, = [, and define

.7::{FAZAEUﬁlAZ’}U{FQJZjIO, o,m— 1}
Then F C L%[- R, R] and F isbiorthogonal to A*.

Theorem 5followsfromtheobservationthat (a) fo ; () =
Ofor0<j<m-—1landX €A, and jt—ifoyj(o) = 4;  for
0<jk<m-1ad (b) fA(/\/) = (5>\7>\/ for A, A€ A,
and 4% f,(0) = 0for0 < k <m — 1.

Thus, for every ¢ € F, fi , defined by (9) is well—
defined and supported in [—r, 7]. Consequently, the func-
tionsv; , are well—defined functions supported in the inter-
v [-R+ r;, R — r;]. Itfollowsthat calculating (f, ) by
(11) requires knowledge of s; only on [—R + r;, R — 7;].
It remains to show that in fact a function f € L%[-R, R]
is completely determined by the inner products (f, ¢) with
@ € F. That thisistrueis proved in [9] and relies heavily
on aresult of Young [15] which statesthat a set biorthogonal
to an exact sequence of exponentialsis always complete on
L2 (—m, ).

Combining the above observations we arrive at a proof
of one direction of Theorem 2 in one dimension. General-
izing to higher dimensionsisessentially trivial and relieson
the observation that d—fold tensor products of compl ete sets
in L?[— R, R] are complete sets in L?[— R, R]?. The other
directionisaso not difficult and details can be foundin [9].
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