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ABSTRACT

It is well known that the Shannon sampling
theorem can be put into a wavelet context. But
it has also been shown that for most wavelets, a
sampling theorem for the associated subspaces
exists. There is even a non-uniform sampling
theorem as in the Shannon case. In general the
bounds on the deviations from uniform are not
as easy to specify in this case. No simple Kadec
1/4 theorem holds except in special cases (such
as the Franklin where the bound is 1/2). For
a particular class, the Meyer wavelets, which
are bandlimited but with a smooth spectrum,
a similar bound is sometimes obtainable. Un-
fortunately, it is much smaller that 1/4.

I.. THE SHANNON THEOREM.

The Shannon sampling theorem, by which a
m—band limited analog signal may be recon-
structed from its sampled values, refers to the
formula

f(t)=>_f(n)s(t —n) (1)

where s refers to the sinc function s(t) =
(sin7rt)/at [5]. This may be modified to allow
irregular sampling and still recover the signal,

Jt) ="t (t) (2)

provided sup,|t, —n| < 1/4. This is the Kadec
1/4 Theorem [§].

IT.. WAVELET SAMPLING.

The requirement that the signal be band lim-
ited can be avoided by considering signals in
other wavelet subspaces. (The spaces of 2™7
band limited signals are such a subspace). For
most father wavelets ¢(t) and their associ-
ated multiresolution ladder of subspaces {V,, },
there is sampling theorem for signals in Vy
which has the same form as (1) except that
S(t) is no longer the sinc function [6]. Rather
it is defined in terms of its Fourier transform

— e

by S(w) = ¢(w)/p * (w), where
o) =2 eme ™ (3)

Of course @ * (w) may not have any zeros, a
condition that holds for most father wavelets.
This enables us to get regular sampling the-
orems even for some time limited signals as
well as other theorems for band limited signals.
However the extension to irregular sampling is
not so straightforward. For shifted sampling,
i.e., sampling at non-integer shifts of the inte-
gers, some more general results are possible by
replacing (3) by the requirement that

Pot (W)=Y platn)e ™ £0  (4)

for some real number «.This gives us a sam-
pling theorem [2].

Sty =2_J(n+a)g,,(t) (5)



after similar calculations. This was extended
in [3] to a further shifted sampling theorem.
Under the same hypothesis, there is éy > 0
such that

f)=>"fn+a+6)&,,) (6)

for |6] < .

An irregular sampling theorem in [3] was
sharpened in [1] to obtain a theorem whose
conclusion is of the form

f) =Y fn4+a+6)nst) (7)

for |6, < 6.

In most cases the § which appears in (7)
cannot be calculated explicitly.
the Franklin wavelet, in which the scaling
function is obtained by orthogonalization

However for

of the “hat function”, stronger results are
possible.

Proposition 1. Let Vj be the wavelet subspace
of the Franklin wavelets, |6; < 6 < %; then
there is a sampling sequence {£,(t)} C V} such

that
f@) =% fk+6,)8,() (8)

for all f € V.

The proof uses the fact that for the re-
producing kernel k(t,a) of Vo, {k(t,tx)} is a
frame in Vj (see[3]).

ITI.. MEYER WAVELETS.

The previous results, except the last, apply
to most standard wavelets. We can get more
precise results by considering a particular, the
Meyer wavelets, which consist of band lim-
ited functions. Their father wavelet, ¢(t), has
properties similar the the sinc function, but is
more rapidly decreasing than it as t— Hoo.
The Fourier transform has the property that

$(w) has its support in [-7m — &, 7+ ¢], for some
0 < & < /3, that is has a slightly larger band-
width than the sinc function. However it can
be chosen to be as smooth as we wish even C*.

A particular example is given by the raised
cosine wavelet [7] in which the orthogonal fa-
ther wavelet is given by

_ sinm(l = B)t + 4Pt cos (L + B)t,
wlt) = Tt(1 — (450)?) )

0 < p/<1/3.

Many non-orthogonal sampling functions in
closed form are possible to find, e.g.,[9]

_ sinwicos gt
O = =10

Another is given by the Bessel functions

,0< g <1/3.  (10)

_ 2T'(v + 1) sinwtJ, (7ft)
B wt(m )Y

These give uniform sampling theorems for f €

£(t) (11)

Vo which in this case is the closed linear span of
{&€(t —n)} which also constitutes a Riesz basis.
For non-uniform sampling we have

Theorem 1 . Tet ¢(t) be a symmetric father
wavelet of Meyer type; let |t, —n| < 0.04. Then
there is a sequence {§,,(t)} C Vp such that for
all f €W,

Ft) =22 f(tk)€x (1),

The proof involves showing that {q(t,t,)},
where ¢(t,u) is the reproducing kernel of Vj, is
a Riesz basis of V. This in turn is done by find-
ing the Fourier transform §(w,t,) and showing
that it is a Riesz basis of the Fourier transform
of Vp by comparing it to §(w,n) which is known
to be such a basis. Then we find that
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and

fZ! eal? < 2ﬂ/ | el )]s

We also use the result [8,p.44]

1

/ ch mw o ztnu)Hde
27

1
< [1+V2sin7(L - Z>]2 > el

By choosing t,, as in the hypothesis v/27v can be
made less than 1. This is the condition needed
for a Riesz basis [8,p.38].

Once we have the Riesz basis {q(t,t,)},we
use the dual biorthogonal basis [8,p.32] to get
our sampling functions {¢,(¢)}. Then the ex-
pansion of f € Vj 1is

=3/ s

which gives us the result we want since ¢(u,t)
is the reproducing kernel.

q(u, tg)du&, (t).

Since the Meyer wavelets are band limited,
we can get an alternate sampling theorem for
band limited signals. This requires a narrower
bandwidth (7 — ¢ instead of 7), but has the
advantage of better time localization and more
rapid convergence of the series.

The wavelets approach has another advan-
tage. The aliasing error may be given in terms
of coefficients of the mother wavelet. This al-
lows an alternate systematic approach to alias-

ing [6].
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