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ABSTRACT
For a given spiral, a bandwidth B can be chosen and
a sequence S can be constructed on the spiral with the
property that all finite energy signals having bandwidth
B can be reconstructed from sampled values on S. The
bandwidth can be expanded as desired, and reconstruc-
tion is attained by constructing sampling sets on inter-
leaving spirals. This solves a problem in MRI; and the
algorithm can be modified to deal with irregular sam-
pling problems in SAR. The algorithm is a consequence
of our theoretical results, which in turn were inspired by
seminal work on balayage in the 1960s by Beurling and
Landau. Our results depend on d-dimensional Fourier
frames and tiling properties of spectral synthesis sets.

1. INTRODUCTION

We shall present a d-dimensional reconstruction algo-
rithm for given irregularly spaced data. The algorithm
is based on our theorem, which provides sufficient con-
ditions in order that a discrete subset A C R¢ should
determine a Fourier frame for the space L?(E) of finite
energy signals on £ C R%. R? is Euclidean space R?,
but is meant to denote the Fourier domain of the space
signals defined on R¢. The sufficient conditions include
a fundamental tiling property and the fact that £ must
satisfy spectral synthesis, e.g., [1], Our approach de-
pends on and is inspired by the deep work of Beurling
[2] and Landau [4], [5] dealing with balayage and with
sampling and interpolation sets.

The algorithm is naturally applicable in some ba-
sic problems in MRI and SAR. For example, in MRI it
is important to reconstruct signals on R? for discrete
spectral data on interleaving spirals, e.g., [9]. Spiral
imaging is used because it provides a setting for fast
imaging methods. In our algorithm, we construct dis-
crete subsets A of a spiral A (for Archimedean spi-
ral), and then we are able to reconstruct the elements
of L*(E) in terms of the Fourier frame determined by
A. The domain E can be made as large as desired by

choosing interleaving spirals. Similarly, our algorithm
can be used in spotlight mode synthetic-aperture radar,
where Fourier domain data is available on polar grids
contained in small annular wedges, e.g., [6], [7].

Section 2 gives the results from the theory of frames
that are required to formulate our theorem. Our theo-
rem is presented in Section3. In Section 4 we show how
to reformulate our theorem as a constructive algorithm
in the case of the aforementioned signal reconstruction
for given spectral data on spirals. In order to imple-
ment the algorithm it is important to have useful frame
bounds, and these are given in Section 5.

2. FRAMES

Definition 1 Let H be a separable Hilbert space. A
sequence {z, :n € Z9} C H is a frame if there ewist
0 < A < B < oo such that for all y in H

Allyl> < Y- Ky, za)l® < Bllyll*-

A and B are frame bounds. If A = B, then the frame
is a tight frame. If {z,} is no longer a frame when
we delete any element from it, then {x,} is an exact
frame.

Definition 2 Let {z,} be a frame for H. The frame
operator S : H —> H is defined by

Sy = Z(y:wn> Ln-

Theorem 3 Let {z,} be a frame for H with frame
bounds A and B, then

(a) AI < S < BI, wherel: H — H is the iden-
tity mapping. In particular, S is positive, and therefore
self-adjoint.

(b) S is invertible, and B~*1 < S™1 < A7' .

(c){S~tx,} is a frame with frame bounds B~ and
A=Y It is called the dual frame of {x,}.

(d) For everyy € H

Yy = Z <y7 st xn> Tn = Z (y; xn> Silmn- (1)

Yy € H,



Remark 4 If{z,} is a frame for H with frame bounds
A, B and frame operator S, then it is easy to see that

25 I < B-A
A+B"— A+B

- <1, (2)

where I : H — H is the identity operator. The in-
equality (2) allows us to prove that

(-

This is the most elementary approach to implement
frames for signal reconstruction, and it is meant to il-
lustrate the importance of effective frame bounds, see
Section 5.

k
A+B> ’

Example 5 Let A C R? be a sequence and let E C R?
have finite Lebesque measure. By the Parseval For-
mula, the following are equivalent.

(1) {e_x: X €A} is a frame for L*(E).

(2) There exist 0 < A < B < oo such that

Allells < Y I8P < Bligli3, (3)
AEA
for all ¢ in the Paley-Wiener space PWg.

For convenience, in the case of (3), we say that A
is a Fourier frame for PWg.

3. THE TILING THEOREM

Duffin and Schaeffer [3] proved the following theorem:

Theorem 6 Let d,L,6 > 0 and let {\,} C R sat-
isfy the properties that {\,} is uniformly dense, i.e.,
A\, — n/d| < L for all n, and {\,} is uniformly dis-
crete, i.e., |Ap — A\pn| > 0 when n # m. Then {\,} is
a Fourier frame for PWg, where E = [—r/2,7/2] and
0<r<d.

It is easy to extend Duffin and Schaeffer’s result to
higher dimensions in the following way.

Theorem 7 We say a sequence {\,} satisfies the con-
dition UD(d, L,9), if it satisfies the following inequal-
ities:

A — Am| >0, n#m.

In R2, if A is of the form { (Amn, V) : m,n € Z} and
there exist di, L,d > 0 such that for fivzed n, Tx,, {A\mn}
satisfies the condition UD(dy, L,d), and {y,} has uni-
form density ds, then X is a Fourier frame for
PW(_y, /2,01 /21%[=ra/2,r2 /2] Whenever 11 < dy and ry <
ds.

Unfortunately, this result only provides one-dimensional
freedom.

Let E C R% be a convex, compact set which is
symmetric about the origin and has non-empty interior.
Then || - || g, defined by

Vz € RY, ||z]|p = inf{r > 0: 2 € rE},

is a norm on R? equivalent to the Euclidean norm. The
polar set E* C R? of E is defined by

E*={yeR%:z-y<1, forallz e E}.

Obviously, E* is a convex, compact set which is sym-
metric about the origin and has non-empty interior.

Example 8 (a) Let E = [-1,1] x [-1,1]. Then for

(561,562) € R2,
(@1, 22)l|lp = inf{r: [z1] < 7 lza| <7}

= [l(@1, 22)[loo-

And the polar set of E is

E*={(v,7%) : Inl + el <1}
={(m,72) :[[(v, %)l <1}
(b) Forp > 1, let E = {(z1,22)

1}. Then E* = {(71,72)
1/p+1/g=1.

Theorem 9 Let E C R be a convex, compact set
which is symmetric about the origin and has non-empty
interior, and let A C RY be a uniformly discrete set
satisfying the tiling property

U TAE* = f{d
AEA

If r < 1/4, then A is a Fourier frame for PW,g.

@, @) lp <
s )lle < 1), where

Our proof involves the Paley-Wiener Theorem and prop-
erties of balayage, and it depends on the profound work
in [2] and [4]. The following example shows that 1/4 is
the best possible.

Example 10 Let

N _{(m+1/2,n—1) if m is odd, n is even,

’ (m,n) otherwise.

(5)
Note that

U (@) c @)l <13) =

It is not difficult to show that {A,, »} can not be a
Fourier frame for PW|_, /3,212 whenever r > 1/2.



4. EXAMPLES OF IRREGULAR
SAMPLING RECONSTRUCTION

We shall use the results from Section 3 to give a con-
structive irregular sampling signal reconstruction
method for the case of interleaving spirals. Example
11 shows how to construct A on a spiral in R? to ob-
tain a Fourier frame for some PWg. Example 12 shows
how interleaving spirals are required to do signal re-
construction for functions having a given bandwidth.
Thus, if we are given a bandwidth E and a finite union
A of sufficiently many rotations of a given spiral, we
can construct a Fourier frame A C A for PWg.

Example 11 Fiz ¢ > 0. For any given r > 0 with
er < 1/2, we shall show how to choose a uniformly
discrete subset A, of the spiral

A, = { (eycos 2my, eysin2my) 1y > 0} C R?
such that A, is a Fourier frame for PWg ;).
Let (1o, &) = o(cos 2y, sin 26y) € R2. We have
dist((mo, o), Ac)

< dist(v0,7 + {c(n+6p) :n e NU{0} }) <c¢/2.

In fact, sup(,, ¢,)er2 dist((m0,%), Ac) = ¢/2.

Now, take 6 > 0 such that (6 + ¢/2)r < 1/4. We
choose the set of points A, along the spiral having curve
distance between consecutive points less than 26. Then
the distance from any point on the spiral A. to A, is
less than §. Further, the distance from any point in R?
to the spiral A, is less than ¢/2. Thus, by the triangle
inequality, the distance from any point in R? to A, is
less than (¢/2 + ¢). This implies that A, is a Fourier
frame for PWp(q ;-

Example 12 For any r > 0, we shall show how to
choose a uniformly discrete subset A, of a finite union
of rotations of the spiral A = { (7 cos2nmy,ysin277y) :
v 2 0} such that A, is a Fourier frame for PWgq ).

First, choose M € N such that v/M < 1/2, and define

M—-1
A= 4,
0
where
Ay = { (yeos2m(y — 2) ysin2n(y — 2)) iy 2 0}
k={(ycos2m(y - 57),ysin2m(y — 7)) : 7 2 0 }.

Now, given any point (10,&) in R2, there exist o >
0,80 € [0,1) such that

(M0, &0) = (70 cos 2wy, o sin 276).

Further, there exists ng € Z* such that ng+60y < v <
ng + 1 + 6y. Thus,

dist((10, o), A)

1
=dist(yo,{no+ 6o+ k/M:0<k<M}) < Y
Then, as in Example 11, we can construct a discrete
subset of A, which is a Fourier frame for PWgg ).

5. FRAME BOUNDS

We can estimate the frame constants, which are used to
implement the results of Section 3 in conjunction with
the signal reconstruction formulas (1). These estimates
are contained in the following theorems.

Theorem 13 Let E C R be a convex, compact set
which is symmetric with respect to every coordinate azis
and has non-empty interior. Let A C R? be uniformly
discrete, and assume

U T E* = Rd.
A€EA
Then
Alloll> <> 18P,
AEA
for all ¢ € PW,, where r < 22 and A = %

Theorem 14 Let E C R be a convex, compact set
which is symmetric with respect to the origin and has
non-empty interior, and let A be a uniformly discrete
set. Then there is r > 0 such that

> 16N < Bllgll?,

AEA

for all p € PWg, where B = (%)de‘l”“(’""""’)“'f*. (We
can take any r > 0 for which 7\ [—r,r]¢ (1, [-7, 7] =
0 for any distinct A\,n € A.)
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