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ABSTRACT where the matrix® is defined by
This paper addresses the problem of estimating the eigen- R2 [Ry; ]Zj=1 2 [(¢;, 1) ]Zj=1

values and condition numbers of matrices of the fdtra:
r(t; — t;). We begin by mentioning some of the prob- and the elements of the vecioare
lems in which such matrices occur, and to which the re-

sults obtained in this paper may be applied. Examples of vi = (f, i)

such problems include (i) approximation by sums of irreg- o i
ular translates (ii) the missing data problem and incomplete '€ @pproximation by the translates of a fixed prototype

sampling series. Then we describe the method for estimatfUnction® is a special case of this problem, in which
ing the eigenvalues and the condition number. Some open AN
issues will also be discussed. ¢i(t) = ot — ti).

In this case, the elements of the matibare given by

Rij = (o(- = 1;),6(- — 1)) = ((), (- =t + 1)) -

Defining the autocorrelation function

1. INTRODUCTION AND MOTIVATION

Matrices of the formR;; = r(z; — x;) often occur in ap-
plications. They arise naturally in the contextlof (mean-
square) approximation by weighted sums of the translates of r(t) = (¢(), (- — t))

a single prototype functiop. They are also related to the

problem of finding conditions under which the translates of one can write

¢ become a Riesz basis. But such matrices also occur in Ry =r(ti — t;).
et 1 SR 2 Asumingth inea ndependence of e e marih
. T . . is positive definite and the interpolation problem
tings. We will briefly mention some of these connections.

Letw € C", and writew = {w;}1<i<,. Consider n .
¢(w) : R* —s R defined by fts) =) wir(ti—t;), (1<i<n)
j=1
Ew) 2 ||f@t) - Z wr, d (D12, is solvable (there existswa € C™ such that the: equations
1 are simultaneously satisfied). The numerical stability of the

solution depends on the eigenvaluesiyfthat is, on the
wheref € L, {¢;i}1<i<n are independent, functions, extrema of the quadratic formf Rz,
and|| - || is the L, normt. Assume thaf is to be minimized
by adjusting the weightfw; }1 <;<. Itis widely known [2] Z wiw; r(t; — t;)
that the solution to thid, approximation problem can be i,
obtained by solving the so-called normal equations

subject to||w|| = 1. Let A and B, respectively, denote
Rw = v, lower and upper bounds for the eigenvaluegofThen,
. . 2 2
1The same symbol also denotes the Euclidean norr&ior C”, but Aljw||* < Z wijw; r(t; — tj) < Bllw||”.

the meaning will be clear from the context. i7



Using R;; = r(t; — tj) = (o(- —t;),¢(- —¢;)) this be- for any f belonging to the space. Also,
comes
sinct = (sinc(-), sinc(t — -)),

2 2
Allw[]” < <Z“’J’ o(- — ti)’zwi o(- — ti)> < Bllwl]”. that is, the sinc function is also its own autocorrelation.
J ¢ Thus, conditions on the distribution of the poinjghat en-

This shows how finding bound$ and B for the eigenval- ~ Sure thatR;; = r(t; — ¢;) has spectral radius(Rk) < 1

ues of R relates to the problem of finding conditions un- (uniformly inn) will also be useful to show thatnc(- —¢;)
der whichg; (t) a (¢ — t;) is a Riesz basis (or an exact is a Riesz basis (or an exact frame) for a certain space. The

frame), with Riesz boundd and B (see [7, p. 32]). The eigenvalue bounds might then be used to find the Riesz or

two problems are equivalent in the subspace generated by@me bounds.
the weighted linear combinations of thg(t),

Zwi Bt —t;).

The matrices of the fornk;; = r(t; — t;) are also inter- () {
s(z) =

2. RESULTS
For a givernr, 0 < r < 1, consider the function

. L, o] <r/2,
esting due to the another reason. Assume that one has a 0, |z|>r/2.
convergent expansion of the form

and its Fourier transforri(¢)

ft) = ij r(t —t;).

+r/2 ) .
§(£) — / 6—1277590 de = Sln(ﬂ'rﬁ)- (1)
We say that this is a sampling expansiowjf = f(t;). The —r/2 ¢
simplest example is the sampling series Introducing the sinc function, this becomes
ft) = Z f(G)sinc(t — j), §(&) = rsinc(ré).
j

the sinc function being defined by Given a set of integers{i; }}_,, consider the matrix

. N 1, xz =0, S= [Sab]z,bzl 2 [8(ia — Z'b)]Z,b=1 2
smcr = sin wa o ;é 0.

T

In addition to the function and the matrixS, we will need
These sampling expansions have a rich mathematical structwo functionss™ ands ™, satisfying the inequality

ture [8, 6] and are also important in digital signal process-
ing, where they have many applications. It often happens
that some of the sampled values are unavailable. Let th
unknown samples b§; };c, U being some set of distinct

0<s (z) <s(a) <57 (). ©)

T hese functions generate the matrices

integers. Under certain conditions, the unknown samples st =[s5 ]n a [ (ia —i )]n
' . . - abla,b=1 — a b a,b=1
f(t;) can be evaluated by solving the equations
— —1n A PN . n
) =3 ) rti=t)+ 3 f(t) rti=ty), (i €U), S = [Swlapr = [5G =in) ]y
Jjeu i¢u The quadratic form associated wishcan be written, using

in which the matrixR;; = r(t; — t;) again appears. The @,

equations can be solved iff— R is nonsingular. In the sinc 2

n

+r/2
case, when the cardinal 071 is finite, R is positive definite  ,H gy — / ' vpe P2TIT |y — / s(z)|P(z))? da,
and all its eigenvalues belong to the inter¢g)1). This -r/2 i R
remains true under slightly more general conditions [3]. A (4)
study of the stability of the problem can be found in [4, 5] where .
(assuming that the pointglie in a regular grid, an assump- P(z) & —i2migw
tion that will not be made here). (@) 1; ke '

An additional remark: the sinc function is a reproducing ) o B
kernel for a certain Paley-Wiener space, and so An equation similar to (4) holds true fdr" and5 ™.
The eigenvalues of are the values assumed by the as-

f@&) = (f(-),sinc(t — ), sociated quadratic form at its stationary points, under the



constraint|v|| = 1. In particular, the extreme eigenvalues
of S are given by the maximum and minimum value of the

guadratic form a® runs over the unit ball i©”. Similarly
for St andS—.

This and (3) show that the three matricsS™ and.S—
are nonnegative definite. They satisfy the inequalities

0<S™<8§5<8H, (5)
whereas their eigenvalues satisfy

Amax(S_)
>\min (S_ )

< Amax(S)
S Amin(s)

< >\max(5+):
S Amin(5+)~ (6)

-3 —a a I¢] z

Figure 1: The functiom? (), depending on the parameters

aandg, 8 > a.

To begin we need to select two candidate functishsnd
s~, and the corresponding matric6$ andS~. The sim-

We will now consider the problem of bounding the eigen- plest continuous function upon which™ and s~ can be

values and condition number of the matfixefined by (2).
The bounds will be obtained assuming that {lye}}_, sat-
isfy

liq —is| > mla —b]

for somem > 1. This condition is much weaker than the

based is probably the trapezoidal functiefj depicted in
the figure 1. Its Fourier transform? (¢)

400
02O 2 [ wlwe e ds

one assumed in [4], and the bounds that will be obtainedis given by

generalize those presented in that paper.
Noting thatS;; = $(0) = r, one sees that the Gegorin
discs associated with the mati$xare the sets

D;={zeC:|z—r| <Ri(S)},
where )
Ry(S) £ Z |Si]-
7=0
J#i
These discs are not very useful becafise not in general

diagonally dominant. This happens because the function

s(z) is discontinuous. In facg(¢) is O(1/¢), and the radii
R;(S) will diverge as the sizes of the matrixS increases,
unless thefi; }}_, are very sparse.

To avoid this problem we consider the discs o and
S~. We start by estimating;(S*) andR;(S™) for certain

S+ andS—. The results will be used to bound the eigenval-

ues of S itself (see (6)). The condition number 6f- S is
given by
Amax(I = S) 1= Amin(S)
I—S é max — -
H( ) )\min([ - S) ]. - )\max(S)

The bounds

)\maX(S) < Amax(5+) < §+(0) + max Ri(S+): (7)

Amin(S) > Amin(S7) > §7(0) —max R;(S™), (8)

lead to

_ sinfr(a + B sinfr(8 — a)g
(3 - )@ ’

that is,
W5 (8) = (o + B) sinc[(a + B)€] sinc[(5 — a)¢].

It follows that

% @i =) < o 51— = %jb = fib)z
: vrzwl— a) ; mZ(al— by
< Wl_a), (10)

using Euler’s classical resJt ;° 1/k? = 72 /6. Note that
W2 (0) = a+ . (11)

We will takea = r/2 and3 = r/2 + ¢, whered is any

positive real, to specify™* (). This and (11) means that
§Y(0) =r+4, (12)

and using (10) one sees that

1
3m26°
Inserting (12) and (13) in (7) leads to

1
3m24°

Ri(ST) <

(13)

)\max(S) <r+6+




The minimum value of the bound is obtained#ot 1/(v/3m),
and is

2
)\max(s) S r + - =

3m (14)

Having dealt withs™ and the upper bound, we now turn to
s~. We will takea = r/2 — 6 and = r/2, whered is any
positive real, to specify—(x). This and (11) means that

§7(0) =r—o,

and using (10) one sees that, as in the previous case,

(S7) < ——.
RBi(57) < 3m?2d

Inserting (15) and (16) in (8) leads to

. 7]

Amin(S) > 1 —d — 325

The maximum value of the bound is obtainedfet 1/(v/3m),
and is

2
)\min(S) Z r— E (17)
Combining (14) and (17), or using (9) directly,
1—r+ 2
R(I = S) < ——4m,
== 7

which is the required bound for the condition number of
I-S.

Several remarks can be made. First, the bounds for the
eigenvalues and the condition number apply for matrices
other thanS (indeed, to the matrices generated by any other
band-limited functionf the Fourier transform of which can
be bounded by trapezoidal functions). Second, many func-
tions other than the trapezoidal functions used will lead to
valid bounds. Using truncated cosine functions, for exam-
ple, leads to the bound

by
2rm

403 1 '
]‘_T_'_ECOt%’Lm

1—Lcot

#(I = S5) <

The problem of selecting the function that leads to the best
possible bounds is open.
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