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ABSTRACT

This paper addresses the problem of estimating the eigen-
values and condition numbers of matrices of the formR =
r(ti � tj). We begin by mentioning some of the prob-
lems in which such matrices occur, and to which the re-
sults obtained in this paper may be applied. Examples of
such problems include (i) approximation by sums of irreg-
ular translates (ii) the missing data problem and incomplete
sampling series. Then we describe the method for estimat-
ing the eigenvalues and the condition number. Some open
issues will also be discussed.

1. INTRODUCTION AND MOTIVATION

Matrices of the formRij = r(xi � xj) often occur in ap-
plications. They arise naturally in the context ofL2 (mean-
square) approximation by weighted sums of the translates of
a single prototype function�. They are also related to the
problem of finding conditions under which the translates of
� become a Riesz basis. But such matrices also occur in
the missing data problem, in the context of sampling ex-
pansions, both in the continuous-time and discrete-time set-
tings. We will briefly mention some of these connections.

Let w 2 C
n, and writew

4

= fwig1�i�n. Consider
�(w) : Rn �! R defined by

�(w)
4

= kf(t)�
nX

k=1

wk �k(t)k2;

wheref 2 L2, f�ig1�i�n are independentL2 functions,
andk � k is theL2 norm1. Assume that� is to be minimized
by adjusting the weightsfwig1�i�n. It is widely known [2]
that the solution to thisL2 approximation problem can be
obtained by solving the so-called normal equations

Rw = v;

1The same symbol also denotes the Euclidean norms inR
n or Cn, but

the meaning will be clear from the context.

where the matrixR is defined by

R
4

= [Rij ]
n
i;j=1

4

= [ h�j ; �ii ]ni;j=1

and the elements of the vectorv are

vi = hf; �ii :
The approximation by the translates of a fixed prototype
function� is a special case of this problem, in which

�i(t)
4

= �(t� ti):

In this case, the elements of the matrixR are given by

Rij = h�(� � tj); �(� � ti)i = h�(�); �(� � ti + tj)i :
Defining the autocorrelation function

r(t) = h�(�); �(� � t)i

one can write
Rij = r(ti � tj):

Assuming the linear independence of the�i, the matrixR
is positive definite and the interpolation problem

f(ti) =

nX
j=1

wj r(ti � tj); (1 � i � n)

is solvable (there exists aw 2 Cn such that then equations
are simultaneously satisfied). The numerical stability of the
solution depends on the eigenvalues ofR, that is, on the
extrema of the quadratic formxHRx,X

i;j

w�i wj r(ti � tj)

subject tokwk = 1. Let A andB, respectively, denote
lower and upper bounds for the eigenvalues ofR. Then,

Akwk2 �
X
i;j

w�i wj r(ti � tj) � Bkwk2:



UsingRij = r(ti � tj) = h�(� � tj); �(� � ti)i this be-
comes

Akwk2 �
*X

j

wj �(� � tj);
X
i

wi �(� � ti)

+
� Bkwk2:

This shows how finding boundsA andB for the eigenval-
ues ofR relates to the problem of finding conditions un-
der which�i(t)

4

= �(t � ti) is a Riesz basis (or an exact
frame), with Riesz boundsA andB (see [7, p. 32]). The
two problems are equivalent in the subspace generated by
the weighted linear combinations of the�i(t),X

i

wi �(t � ti):

The matrices of the formRij = r(ti � tj) are also inter-
esting due to the another reason. Assume that one has a
convergent expansion of the form

f(t) =
X
j

wj r(t� tj):

We say that this is a sampling expansion ifwj = f(tj). The
simplest example is the sampling series

f(t) =
X
j

f(j)sinc(t� j);

the sinc function being defined by

sincx
4

=

�
1; x = 0;

sin�x
�x ; x 6= 0:

These sampling expansions have a rich mathematical struc-
ture [8, 6] and are also important in digital signal process-
ing, where they have many applications. It often happens
that some of the sampled values are unavailable. Let the
unknown samples beftigi2U , U being some set of distinct
integers. Under certain conditions, the unknown samples
f(ti) can be evaluated by solving the equations

f(ti) =
X
j2U

f(tj) r(ti�tj)+
X
j =2U

f(tj) r(ti�tj); (i 2 U);

in which the matrixRij = r(ti � tj) again appears. The
equations can be solved iffI �R is nonsingular. In the sinc
case, when the cardinal ofU is finite,R is positive definite
and all its eigenvalues belong to the interval(0; 1). This
remains true under slightly more general conditions [3]. A
study of the stability of the problem can be found in [4, 5]
(assuming that the pointsti lie in a regular grid, an assump-
tion that will not be made here).

An additional remark: the sinc function is a reproducing
kernel for a certain Paley-Wiener space, and so

f(t) = hf(�); sinc(t� �)i ;

for anyf belonging to the space. Also,

sinc t = hsinc(�); sinc(t� �)i ;

that is, the sinc function is also its own autocorrelation.
Thus, conditions on the distribution of the pointsti that en-
sure thatRij = r(ti � tj) has spectral radius�(R) < 1
(uniformly inn) will also be useful to show thatsinc(�� ti)
is a Riesz basis (or an exact frame) for a certain space. The
eigenvalue bounds might then be used to find the Riesz or
frame bounds.

2. RESULTS

For a givenr, 0 < r < 1, consider the function

s(x) =

�
1; jxj � r=2;
0; jxj > r=2:

and its Fourier transform̂s(�)

ŝ(�) =

Z +r=2

�r=2
e�i2��x dx =

sin(�r�)

��
: (1)

Introducing the sinc function, this becomes

ŝ(�) = r sinc(r�):

Given a set ofn integersfikgnk=1, consider the matrix

S = [Sab ]
n
a;b=1

4

= [ ŝ(ia � ib) ]
n
a;b=1 (2)

In addition to the functions and the matrixS, we will need
two functionss+ ands�, satisfying the inequality

0 � s�(x) � s(x) � s+(x): (3)

These functions generate the matrices

S+ =
�
S+
ab

�n
a;b=1

4

=
�
ŝ+(ia � ib)

�n
a;b=1

S� =
�
S�ab

�n
a;b=1

4

=
�
ŝ�(ia � ib)

�n
a;b=1

The quadratic form associated withS can be written, using
(1),

vHSv =

Z +r=2

�r=2

�����
nX

k=1

vke
�i2�ikx

�����
2

dx =

Z
R

s(x)jP (x)j2 dx;
(4)

where

P (x)
4

=

nX
k=1

vke
�i2�ikx:

An equation similar to (4) holds true forS+ andS�.
The eigenvalues ofS are the values assumed by the as-

sociated quadratic form at its stationary points, under the



constraintkvk = 1. In particular, the extreme eigenvalues
of S are given by the maximum and minimum value of the
quadratic form asv runs over the unit ball inCn. Similarly
for S+ andS�.

This and (3) show that the three matricesS, S+ andS�

are nonnegative definite. They satisfy the inequalities

0 � S� � S � S+; (5)

whereas their eigenvalues satisfy

�max(S
�) � �max(S) � �max(S

+);
�min(S

�) � �min(S) � �min(S
+):

(6)

We will now consider the problem of bounding the eigen-
values and condition number of the matrixS defined by (2).
The bounds will be obtained assuming that thefikgnk=1 sat-
isfy

jia � ibj � mja� bj
for somem > 1. This condition is much weaker than the
one assumed in [4], and the bounds that will be obtained
generalize those presented in that paper.

Noting thatSii = ŝ(0) = r, one sees that the Gerˇsgorin
discs associated with the matrixS are the sets

Di
4

= fz 2 C : jz � rj � Ri(S)g;
where

Ri(S)
4

=

n�1X
j=0
j 6=i

jSij j:

These discs are not very useful becauseS is not in general
diagonally dominant. This happens because the function
s(x) is discontinuous. In fact,̂s(�) isO(1=�), and the radii
Ri(S) will diverge as the sizen of the matrixS increases,
unless thefikgnk=1 are very sparse.

To avoid this problem we consider the discs forS+ and
S�. We start by estimatingRi(S

+) andRi(S
�) for certain

S+ andS�. The results will be used to bound the eigenval-
ues ofS itself (see (6)). The condition number ofI � S is
given by

�(I � S)
4

=
�max(I � S)

�min(I � S)
=

1� �min(S)

1� �max(S)
:

The bounds

�max(S) � �max(S
+) � ŝ+(0) + max

i
Ri(S

+); (7)

�min(S) � �min(S
�) � ŝ�(0)�max

i
Ri(S

�); (8)

lead to

�(I � S) � 1� �min(S
�)

1� �max(S+)
� 1� ŝ�(0) + maxiRi(S

�)
1� ŝ+(0)�maxiRi(S+)

:

(9)

-
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Figure 1: The functionw�
�(x), depending on the parameters

� and�, � > �.

To begin we need to select two candidate functionss+ and
s�, and the corresponding matricesS+ andS�. The sim-
plest continuous function upon whichs+ and s� can be
based is probably the trapezoidal functionw�

� depicted in
the figure 1. Its Fourier transform̂w�

�(�)

ŵ�
�(�)

4

=

Z +1

�1
w�
�(x)e

�i2��x dx

is given by

ŵ�
�(�) =

sin[�(�+ �)�] sin[�(� � �)�]

�2(� � �)�2
;

that is,

ŵ�
�(�) = (�+ �) sinc[(�+ �)�] sinc[(� � �)�]:

It follows thatX
a6=b

jŵ�
�(ia � ib)j � 1

�2(� � �)

X
a6=b

1

(ia � ib)2

� 1

�2(� � �)

X
a6=b

1

m2(a� b)2

� 2

�2m2(� � �)

1X
k=1

1

k2

� 1

3m2(� � �)
; (10)

using Euler’s classical result
P1

1 1=k2 = �2=6. Note that

ŵ�
�(0) = �+ �: (11)

We will take� = r=2 and� = r=2 + Æ, whereÆ is any
positive real, to specifys+(x). This and (11) means that

ŝ+(0) = r + Æ; (12)

and using (10) one sees that

Ri(S
+) � 1

3m2Æ
: (13)

Inserting (12) and (13) in (7) leads to

�max(S) � r + Æ +
1

3m2Æ
:



The minimum value of the bound is obtained forÆ = 1=(
p
3m),

and is

�max(S) � r +
2p
3m

: (14)

Having dealt withs+ and the upper bound, we now turn to
s�. We will take� = r=2� Æ and� = r=2, whereÆ is any
positive real, to specifys�(x). This and (11) means that

ŝ�(0) = r � Æ; (15)

and using (10) one sees that, as in the previous case,

Ri(S
�) � 1

3m2Æ
: (16)

Inserting (15) and (16) in (8) leads to

�min(S) � r � Æ � 1

3m2Æ
:

The maximum value of the bound is obtained forÆ = 1=(
p
3m),

and is

�min(S) � r � 2p
3m

: (17)

Combining (14) and (17), or using (9) directly,

�(I � S) �
1� r + 2p

3m

1� r � 2p
3m

;

which is the required bound for the condition number of
I � S.

Several remarks can be made. First, the bounds for the
eigenvalues and the condition number apply for matrices
other thanS (indeed, to the matrices generated by any other
band-limited functionf the Fourier transform of which can
be bounded by trapezoidal functions). Second, many func-
tions other than the trapezoidal functions used will lead to
valid bounds. Using truncated cosine functions, for exam-
ple, leads to the bound

�(I � S) � 1� 1
m cot �

2rm

1� 4��
� + 1

m cot �
2�m

:

The problem of selecting the function that leads to the best
possible bounds is open.
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