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ABSTRCT physics compactly, we have developed a wavefront-resonance
matching-pursuits dictionary [1], which we exploit here to generate
A wave-based matching-pursuits algorithm is used to parse multthe feature vectong.
aspect time-domain backscattering data into its underlying In addition to exploiting the underlying wave physics in
wavefront-resonance constituents, or features. Consequently, theconstruction of the wave-based matching-pursuits dictionary, we
multi-aspect waveforms under test are mapped Mtdeature gjjize such in the evaluation of the probabilifis,, yo, ...y | T
vectorsy,. Target identification is effected by fusing théseectors |, harticular, it is well known that wave scattering from most targets
in @ maximum-likelihood sense, which we show, under reasonablg cparacterized by angular sectors over which the angle-dependent
assumptions, can be implemented via a hidden Markov model.attered fields are slowly varying [1]. Each such sector is here
(HMM). - Algorithm - performance is assessed by consideringigmmed a “state”, and the number of states characteristic of a given
measured acoustic scattering data from five similar submergeg et is dictated by the target complexity and sensor bandwidth.
elastic targets. Since a given state is characterized by particular underlying physics,
one can define a state-dependent probability of observing a given
parameter vectoy.
) . ) o Note that, as modeled, thescattered waveforms sample
, We are interested in the identification of a concealed oty giscrete states characteristic of the target under interrogation,
distant target, assuming that the putative target has been deteclGflare some states may be sampled more than once, and others not
gnd therefqre thgt its pominal location is known. However, tlhetargeét all, depending on the (hidden) target-sensor orientation. If we
itself and its orientation are unknown, and to be determined. Wgsgme that the probability of transitioning from one state to the
assume tha scattered waveforms are measuredNalifferent oy js dictated only by the current state occupied, then the state
target-sensor orientations. After performing matchmg-pursuntsSequencés is a Markov process [2], and the protités p4(S|T,)
feature parsing on each of thescattered waveforms, we effect a .o pe evaluated by a Markov model. More properly, viizeu
mapping of the scattered waveforms tofeature vectorg, where  i44enMarkov model (HMM) [3], since the underlying states are

Y, represents the feature parameters fonthescattered waveform.  higgen and the only observable is the sequence of parameter vectors
Maximum-likelihood target identification is effected by choosmg{yl Vor Vil

that targefT, for whichp(yy, Yz, ... ¥n [ T) 2 P(Yy Yoo oY | T ¥
T.. Note that the problem is treated statistically even if the data
under test is noise-free, since the absolute target-sensor orientation
is hidden and modeled as a stochastic parameter.
Over the last several decades, there has been a significant
effort to develop modeling algorithms that faithfully predict the
fields scattered from general targets [1], and the insight accrued
from such studies can be exploited in the aforementioned feature tafget\

I. INTRODUCTION
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parsing. When a pulse of electromagnetic or acoustic energy
impinges a target, there are initially diffractions from localized
scattering centers on the target surface. Such features are ter
wavefronts, and are characterized by localized support in time al
wide support in frequency, with the extent of each dictated by the
incident-pulse bandwidth. After the initial scatterings from localizedg;,,,
scattering centers, wave energy reverberates between scatteriq
centers [1] or may circumnavigate the target [1], with each such

reverberation or circumnavigation shedding energy, which is

received at the sensor. This resonant portion of the scattered signal
occurs after the initial diffractions, at what is termed “late time”, and Matching pursuits is an algorithm developed by Mallat

such features are characterized by localized support in frequen(‘;%|d Zhang [4] for decomposition of a sampled wavefirf), f,

and extended support in time, with the relative extent of eactF]T in terms of a prescribed set of normalized veotoB, where
dictated by the Q of the resonance [1]. To represent this underlying ’

re 1. Schematic of a state decomposition for a generic target.
r states are depicted here.
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D is termed a “dictionary”. The dictionary can take an arbitrary In deriving (2), although the sensor moves in a fixed digection,
form, and therefore can be tailored to the features that underlie the assume the target orientation is unknown and thénefore tha
waveform(s) under study. We perform inner productse>< fe, absolutemotion relative to the target is unknown. We see from (2)
betweenf and the sampled dictionary elemerfsand select that that the state transitions are modeled as a Markov process, which
dictionary elemente, for which |<f|e>|>|<fle>|, Vv esD. A simplifies implementation of the subsequent identification
remainderR,=f-<f| e >e, is defined. The process is repeated on thealgorithm. Rigorously speaking, the Markov model is an
remainderR,, and after| iterations | dictionary elements are approximation. For example, if statehas widthA@<p <2A¢, and
extracted. As discussed above, we apply a wavefront-resonaneeaveforms are sampled from state on two consecutive
dictionary [5], the details of which will be further elucidated in the observations, then on the next observatigr=0. It is possible to

talk. alter the Markov model to account for time-dependent state-
transition probabilities, but, as discussed in Sec. IV, we have found
lll. Continuous-HMM Target Identification the approximation in (2) to be appropriate for the cases investigated
thus far. The expressions in (2) define a tri-diagonal state-transition
A. States and state-transition probabilities matrix A.

After applying matching pursuits on scattered waveformsB. Continuous HMM
from N different target-sensor orientations, ed€kdimensional
waveform,f, is mapped into aRl-dimensional parameter vectgr Maximum-likelihood target identification is effected by
whereF represents the number of features characteristic of eachelecting that targef, for whichp(yy, Yo, ...,y | Ti) = PYVw Y1 -0 Y
dictionary elementg.g, time shift, oscillation frequency, etc.). The | T,) ¥ T,. Recall that theN measured waveforms, and henge
requisite number of matching-pursuits iteratidnss dependent on sample N hidden states of the target under interrogation. We
the scattering complexity and on dictionary compactness; for ththerefore evaluatp(y,, Y, -..,Yn | T by considering all possibi™
data considered in Sec. IV, we have found three matching-pursuigate sequences, with each weighted by its pildlalh occurrence.
iterations sufficient. In particular,
As discussed in the Introduction, underlying scattering
physics dictates that general targets have scattered figlasd
hencey) that vary strongly with target-sensor orientation, the degree MM dM
of variability depending on the detailed target geometry andgthe p(yl’yZ""yN‘Tk):Xm:Xn:"zl:%:[nmam,n"'atq]P ®)
sensor wavelength. However, one can generally define angular -
sectors, representative of target-sensor ori?entationi, over Whngl‘ll the PIP0A /S TIPO, S, T p(yN'l‘S'Tk)p(yN‘Sq'Tk)]
physics and the scattered fiefdare slowly varying. We define such
angular sectors as “states”. TNesignalsf, are sample waveforms
from N states, and in practice particular states are often sampledhere we sum the indices, n, | andq over allM states for target
multiple times, depending on the target orientation and sensdk,. In (3) we have utilized the Markov state-transition model from
motion. The actual states sampled are “hidden” since the target &ec. llA.
distant or concealed. The form in (3) is characteristic of a hidden Markov model
Assume that a given target can be representeby (HMM) [3], and the requisite multiple sums can be evaluated
contiguous states, with (in two dimensions) consecutive angulagfficiently via the well-known forward-backward algorithm [3].
support ofg; , @,, ...,@, (see Fig. 1). If we assume that the targetAlternatively, recently HMM researchers have employed the Viterbi
orientation is uniformly distributed, then the probability that the firstalgorithm [6].

sampled waveforng, will be in statemis In (1) and (2) we have defined the initial estimatesfor
and A; it remains to describe how the continuous distribugin
M | S, T is generated, it defined as the probability of extracting the
T= @O / Z 0 1) feature vectoy, when the target-sensor orientation is in sgtef
i=1 targetT,. We consider training data from st&geand targeT,, from

which we determine the distribution of the associated matching-

pursuits parameter vectoysn theFl-dimensional parameter space.
Moreover, if we assume that the sensor moves in one directiodsing the K-means algorithm [7] in conjunction with the
relative to the putative target center (the target has been detectéddahalanobis distance [8] metric, we generatediscrete Fl-

and is now being identified) with angular sampliig, with Ap<e,, dimensional vectorsv;, ..., v, which coarsely represent the
V@, then the probability of transitioning from stateto statel, distribution of the training data. Subsequently, The Mahalanobis
represented bg,, , is given by distance [8] is then used to cluster the training data, Wjth

representing the cluster associated wjthVe represent, with a

) . ¢ -Ap | Gaussian distributiorg(y, | S, TJ), with mean B()=v, y,cC.
Q12 1f Ap<q <20 [ a = if ¢,>2A¢ Moreover, for simplicity, we approximate tHd parameters as
p
m @) uncorrelated. Finally, we have the mixture distribution
A .
8nmi1~8mm-1” 2 ; 8y =0 if [m-1[>1

29 L L
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The coefficientswy; are weighted to reflect the relative number of a duplicate shell, stiffened with equally spaced ring stiffeners; (3) a

elements in clustdr duplicate shell, stiffened with unequally spaced ring stiffeners and
augmented by resiliently mounted, elastic internal rods; (4) a slightly
C. Training of physics-based HMM larger, nearly periodically ribbed shell; and (5) a duplicate of shell

4, with a large number (~1000) of attached internalllasrs.
The statistic in (3) considers all possibld" state Specifics on the measurement system and further details on the
sequences, weighted by the associated state-transition probabilities. targets measured by the target facility sectical Riethenhthv
The Viterbi algorithm yields the maximum-likelihood (ML) state Laboratory can be found in [9-11]. In patrticular, Targetsdrend 3
sequence, defining the new likelihood function described in [10], Target 4 in [9], and Targets 4 and 5 in [11]. These
targets are geometrically similar, providing a challenging test to the
HMM identification algorithm. Each of the targets was ensonified
/ _ max by an acoustic waveform with bandwidth from approximately 11-40
PVYor InIT= "™ [T 3l KHz, corresponding to relative target dimensions okR210.4,
P=[p(Yy] S TP, | Sy T PV -1l S TIPS T)] wherek is the wavenumber and is the average target radius.
Finally, for each target, a five-state HMM wasizetd.

In addition to determining the ML state sequence, (5) can be usegl Continuous vs. discrete HMMs
to refine the initial estimates for the vects¥| 7, =, ..., ] and the
tri-diagonal MxM dimensional matrixA, with elementsinitially As an alternative to the continuous mixture density
defined in (1) and (2), respectively. In particular, recall that (1) andlefined in (2), one can use a discrete probability function to describe
(2) are based on an initial angular state decomposition, inaccuracitee state-dependent distribution of the matching-pursuits parameter
in which will yield errors inz and A, as well as errors in the vectory,. This is done by defining discrete elements in theFl-
probabilitiesp(y, | S,, T,)- Here we use the Viterbi algorithm as a dimensional parameter space, with these elements constituting a
tool to update the state decompositions as well as the probabiliti€ésodebook”C [7]. Eachy,, extracted via matching pursuits for the
7, A, and p(y, | S.» Td; (1) and (2) and the initial state nth scattered waveforrfy, is mapped to its nearest neighborGn
decomposition can be viewed as starting points for subsequefising the Mahalonobis distance [8]). In this manner, the continuous
optimization. Fl--dimensional space is effectively discretized idteegions, with

For a given set of data representative of tafgetve use b, representing the probability of realizing cbdek element; in
the Viterbi algorithm [6] to determine the ML state sequence for gtafEhe probabilitiedy,, define aJxM dimensional matri8,
each set oN multi-aspect scattered waveforms available from the which is “learned” during a training phase similar to that discussed
training data. For a fixed sensor rate of motion, each $¢thaflti- in Sec. lll.
aspect scattered waveforms is representative of a different initial We perform a comparison between the discrete and
target-sensor orientation. By defining the ML state sequence for continuous HMM. With regard to the former, we utilize a 64-
each set ofN training waveforms, the Viterbi algorithm [6] element codebook, and the vectorand matricesA and B are
associates each aspect-dependent scattered waveform with optimized via the Viterbi algorithm [6]. The codebook was
particular state (not necessarily the same as the initial stagenerated via the K-means algorithm [7]. In Fig. 2 we show a
decomposition). Therefore, in the training cycle, we update theomparison of discrete and continuous HMM performance, as a
states each scattered waveform is associated with. Moreover, affeinction of number of observatiohs assuming5 angular
performing Viterbi ML estimation on alN-waveform training
sequences, we have available the number of times rstatas
selected for waveform=1, allowing a reestimation of,, Further,
for each statem, we know the number of state transitions that
occurred to stat¢, allowing a reestimation o, permitting an
updating of the state-transition-probability matfix Finally, since
the association between scattered waveforms and states has been
updated via Viterbi estimation, we can update the probabifiifies
| S, T as well. Therefore, after the first training cycle the Viterbi
algorithm [6] updates the HMM parametersA, andp(y, | S,, To)-
The process is then repeated, now performing Viterbi ML estimation
on the refined HMM model. This again yields updated HMM
parameters, and the process is iterated until the changés, iy,
...,Yn | T are less than a prescribed threshold, at which point the
HMM is declared optimized for the available training data.
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IV. Example Results

1 2 3 4 5 6 7 8 9 10
A. Submerged elastic targets consited NumberofObserations

We consider measured acoustic backscattering data frofigure 2. Average discrete and continuous HMM performance.
five submerged elastic targets: (1) a cylindrical air-filed shell; (2)Average SNR: 20 dB. sampling.



For both the continuous and discrete HMMs, each target required Classified Target

five states. The results in Fig. 2 are for noisy data, with the noise T1 T2 T3 T4 T5
having a power spectral density (PSD) identical to the spectrum of

the incident pulse, in an attempt to simulate additive clutter. For

both the discrete and continuous HMMs, training was performed by ™ 91.29 6.21 0.96 0.00
using all 360 backscattered waveforms fremeh target (L sampling I3
was used in the measurements), and 15 noise realizations wereg
considered for each scattered waveform. Since theriarenique =
observation sequences, we trained oR1BA sequences. The testing “E’
was performed using all possible sequences of the 360 backscatteree
waveforms (for theN measurements characteristic of a given T4
sequence), and 4 noise realizations, 360 test sequences. Since

the noise realizations used for testing and training were different, the T5 0.00 0.00 0.13 99.86
HMMs were tested and trained on distinct data. In FigN=210
samples corresponds to a total of 45 of data (5 sampling), for
which we see an average misclassification probability of less than
0.1, for both the discrete and continuous HMMs.

1.24 | 86.18] 10.91 0.00

2.90 | 10.77] 85.63 0.00

Table 2.Confusion matrix for the continuous HMM, in percent.

C. Confusion matrix
V. Conclusions
The results in Fig.2 present tageragemisclassification

probability, for the discrete and continuous HMMs, a Wave-based matching pursuits and a hidden Markov
misclassification defined as identifying the data as characteristic ahodel (HMM) have been presented for the identification of
target T, when it was actually scattered from targetAdditional concealed or distant targets. We havlizat the underlying wave
information is presented in the form of a confusion matrix, agphysics to build a wavefront-resonance dictionary and as motivation
presented in Tables 1 and 2, for the discrete and continuous HMMfr dividing the aspect-dependent scattered fields into “states”,
respectively. Using the target designations described in Sec. IVAangular-dependent sectors over which the wave physics is slowly
the confusion matrix considers data from taffgtand quantifies  varying. The results from this investigation clearly demonstrate the
the probability that it is classified as tardgtfor i andk from one  superiority of the continuous HMM relative to its discrete
to five (for the five targets considered here). Several observatiorsunterpart.
can be made from these tables, which considered the same 20 dB
average SNR data presented in Fig. 2, for the caNe®E&cattered References
waveforms (20 of data, with°>5 sampling). First, as in Fig. 2, these
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