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ABSTRCT

A wave-based matching-pursuits algorithm is used to parse multi-
aspect time-domain backscattering data into its underlying
wavefront-resonance constituents, or features. Consequently, the N
multi-aspect waveforms under test are mapped into N feature
vectors, y . Target identification is effected by fusing these N vectorsn

in a maximum-likelihood sense, which we show, under reasonable
assumptions, can be implemented via a hidden Markov model
(HMM). Algorithm performance is assessed by considering
measured acoustic scattering data from five similar submerged
elastic targets.

I. INTRODUCTION

We are interested in the identification of a concealed or
distant target, assuming that the putative target has been detected
and therefore that its nominal location is known. However, the target
itself and its orientation are unknown, and to be determined. We
assume that N scattered waveforms are measured, at N different
target-sensor orientations. After performing matching-pursuits
feature parsing on each of the N scattered waveforms, we effect a
mapping of the N scattered waveforms to N feature vectors y , wheren

y  represents the  feature parameters for the nth scattered waveform.n

Maximum-likelihood target identification is effected by choosing
that target T  for which p( y , y , ..., y  
 T ) � p(y , y , ..., y  
 T ) ~i     1  2   N  i   1  2   N  k

T . Note that the problem is treated statistically even if the datak

under test is noise-free, since the absolute target-sensor orientation
is hidden and modeled as a stochastic parameter.

Over the last several decades, there has been a significant
effort to develop modeling algorithms that faithfully predict the
fields scattered from general targets [1], and the insight accrued
from such studies can be exploited in the aforementioned feature
parsing. When a pulse of electromagnetic or acoustic energy
impinges a target, there are initially diffractions from localized
scattering centers on the target surface. Such features are termed
wavefronts, and are characterized by localized support in time and
wide support in frequency, with the extent of each dictated by the
incident-pulse bandwidth. After the initial scatterings from localized
scattering centers, wave energy reverberates between scattering
centers [1] or may circumnavigate the target [1], with each such
reverberation or circumnavigation shedding energy, which is
received at the sensor. This resonant portion of the scattered signal
occurs after the initial diffractions, at what is termed “late time”, and
such features are characterized by localized support in frequency
and extended support in time, with the relative extent of each
dictated by the Q of the resonance [1]. To represent this underlying

physics compactly, we have developed a wavefront-resonance
matching-pursuits dictionary [1], which we exploit here to generate
the feature vectors y . n

In addition to exploiting the underlying wave physics in
construction of the wave-based matching-pursuits dictionary, we

utilize such in the evaluation of the probabilities p(y , y , ..., y  
 T ).1  2   N  k

In particular, it is well known that wave scattering from most targets
is characterized by angular sectors over which the angle-dependent
scattered fields are slowly varying [1]. Each such sector is here
termed a “state”, and the number of states characteristic of a given
target is dictated by the target complexity and sensor bandwidth.
Since a given state is characterized by particular underlying physics,
one can define a state-dependent probability of observing a given
parameter vector y.

Note that, as modeled, the N scattered waveforms sample
N discrete states characteristic of the target under interrogation,
where some states may be sampled more than once, and others not
at all, depending on the (hidden) target-sensor orientation. If we
assume that the probability of transitioning from one state to the
next is dictated only by the current state occupied, then the state
sequence S is a Markov process [2], and the probabilities p (S
T )S k

can be evaluated by a Markov model. More properly, we utilize a
hidden Markov model (HMM) [3], since the underlying states are
hidden and the only observable is the sequence of parameter vectors
{ y , y , ..., y }.1  2   N

Figure 1. Schematic of a state decomposition for a generic target.
Four states are depicted here.

II. Wave-Based Matching Pursuits

Matching pursuits is an algorithm developed by Mallat
and Zhang [4] for decomposition of a sampled waveform f=[f , f , ...,1  2

f ]   in terms of a prescribed set of normalized vectors e�D, whereK
T
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D is termed a “dictionary”. The dictionary can take an arbitrary In deriving (2), although the sensor moves in a fixed direction, we
form, and therefore can be tailored to the features that underlie the assume the target orientation is unknown and therefore that the
waveform(s) under study. We perform inner products, <f
e>= f e,H

between f and the sampled dictionary elements e, and select that
dictionary element e  for which 
<f
e >
�
<f
e>
, ~ e�D. A1   1

remainder R =f-<f
e >e is defined. The process is repeated on the1 1 1  

remainder R , and after I iterations I dictionary elements are1

extracted. As discussed above, we apply a wavefront-resonance
dictionary [5], the details of which will be further elucidated in the
talk.

III. Continuous-HMM Target Identification

A. States and state-transition probabilities

After applying matching pursuits on scattered waveforms
from N different target-sensor orientations, each K-dimensional
waveform, f , is mapped into an FI-dimensional parameter vector yn         n,

where F represents the number of features characteristic of each
dictionary element (e.g., time shift, oscillation frequency, etc.). The
requisite number of matching-pursuits iterations, I, is dependent on
the scattering complexity and on dictionary compactness; for the
data considered in Sec. IV, we have found three matching-pursuits
iterations sufficient.

As discussed in the Introduction, underlying scattering
physics dictates that general targets have scattered fields f (and
hence y) that vary strongly with target-sensor orientation, the degree
of variability depending on the detailed target geometry and the
sensor wavelength. However, one can generally define angular
sectors, representative of target-sensor orientations, over which the
physics and the scattered fields f are slowly varying. We define such
angular sectors as “states”. The N signals f  are sample waveformsn

from N states, and in practice particular states are often sampled
multiple times, depending on the target orientation and sensor
motion. The actual states sampled are “hidden” since the target is
distant or concealed.

Assume that a given target can be represented by M
contiguous states, with (in two dimensions) consecutive angular
support of Q  , Q  , ..., Q   (see Fig. 1). If we assume that the target1  2   M

orientation is uniformly distributed, then the probability that the first
sampled waveform y  will be in state m is 1

Moreover, if we assume that the sensor moves in one direction
relative to the putative target center (the target has been detected,
and is now being identified) with angular sampling �Q, with �Q<Qm

~Q , then the probability of transitioning from state m to state l,m

represented by a , is given bym,l

absolute motion relative to the target is unknown. We see from (2)
that the state transitions are modeled as a Markov process, which
simplifies implementation of the subsequent identification
algorithm. Rigorously speaking, the Markov model  is an
approximation. For example, if state m has width �Q�Q �2�Q, andm

waveforms are sampled from state m on two consecutive
observations, then on the next observation a =0. It is possible tomm

alter the Markov model to account for time-dependent state-
transition probabilities, but, as discussed in Sec. IV, we have found
the approximation in (2) to be appropriate for the cases investigated
thus far. The expressions in (2) define a tri-diagonal state-transition
matrix A.

B. Continuous HMM

Maximum-likelihood target identification is effected by
selecting that target T  for which p( y , y , ..., y  
 T ) � p(y , y , ..., yi    1  2   N  i   1  2   N


 T ) ~ T . Recall that the N measured waveforms, and hence y ,k   k          n

sample N hidden states of the target under interrogation. We
therefore evaluate p(y , y , ..., y  
 T ) by considering all possible M1  2   N  k

N

state sequences, with each weighted by its probability of occurrence.
In particular,

where we sum the indices m, n, l and q over all M states for target
T . In (3) we have utilized the Markov state-transition model fromk

Sec. IIIA.
The form in (3) is characteristic of a hidden Markov model

(HMM) [3], and the requisite multiple sums can be evaluated
efficiently via the well-known forward-backward algorithm [3].
Alternatively, recently HMM researchers have employed the Viterbi
algorithm [6].

In (1) and (2) we have defined the initial estimates for %

and A; it remains to describe how the continuous distribution p(yn


 S , T ) is generated, it defined as the probability of extracting them  k

feature vector y  when the target-sensor orientation is in state S  ofn        m

target T . We consider training data from state S  and target T , fromk        m   k

which we determine the distribution of the associated matching-
pursuits parameter vectors y in the FI-dimensional parameter space.
Using the K-means algorithm [7] in conjunction with the
Mahalanobis distance [8] metric, we generate L discrete FI-
dimensional vectors v , ..., v , which coarsely represent the1   L

distribution of the training data. Subsequently, The Mahalanobis
distance [8] is then used to cluster the training data, with Cl

representing the cluster associated with v . We represent C  with al    l

Gaussian distribution g (y  
 S , T ), with mean E(y )=v , y �C .l n  m  k    n l  n l

Moreover, for simplicity, we approximate the FI parameters as
uncorrelated. Finally, we have the mixture distribution
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The coefficients w  are weighted to reflect the relative number of a duplicate shell, stiffened with equally spaced ring stiffeners; (3) al

elements in cluster l. duplicate shell, stiffened with unequally spaced ring stiffeners and

C. Training of physics-based HMM

The statistic in (3) considers all possible M  state Specifics on the measurement system and further details on theN

sequences, weighted by the associated state-transition probabilities. targets measured by the target facility section at the Naval Research
The Viterbi algorithm yields the maximum-likelihood (ML) state Laboratory can be found in [9-11]. In particular, Targets 1 and 3 are
sequence, defining the new likelihood function described in [10], Target 4 in [9], and Targets 4 and 5 in [11]. These

In addition to determining the ML state sequence, (5) can be used
to refine the initial estimates for the vector %=[% , % , ..., % ] and the1  2   M

tri-diagonal M×M dimensional matrix A, with elements initially
defined in (1) and (2), respectively. In particular, recall that (1) and
(2) are based on an initial angular state decomposition, inaccuracies
in which will yield errors in % and A, as well as errors in the
probabilities p(y  
 S , T ). Here we use the Viterbi algorithm as an  m  k

tool to update the state decompositions as well as the probabilities
%, A, and p(y  
 S , T ); (1) and (2) and the initial staten  m  k

decomposition can be viewed as starting points for subsequent
optimization. 

For a given set of data representative of target T , we usek

the Viterbi algorithm [6] to determine the ML state sequence for state m. The probabilities b  define a J×M dimensional matrix B,
each set of N multi-aspect scattered waveforms available from the which is “learned” during a training phase similar to that discussed
training data. For a fixed sensor rate of motion, each set of N multi- in Sec. III. 
aspect scattered waveforms is representative of a different initial We perform a comparison between the discrete and
target-sensor orientation. By defining the ML state sequence for continuous HMM. With regard to the former, we utilize a 64-
each set of N training waveforms, the Viterbi algorithm [6]
associates each aspect-dependent scattered waveform with a
particular state (not necessarily the same as the initial state
decomposition). Therefore, in the training cycle, we update the
states each scattered waveform is associated with. Moreover, after
performing Viterbi ML estimation on all N-waveform training
sequences, we have available the number of times state m was
selected for waveform n=1, allowing a reestimation of % Further,m. 

for each state m, we know the number of state transitions that
occurred to state l, allowing a reestimation of a , permitting anm,l

updating of the state-transition-probability matrix A. Finally, since
the association between scattered waveforms and states has been
updated via Viterbi estimation, we can update the probabilities p(yn


 S , T ) as well. Therefore, after the first training cycle the Viterbim  k

algorithm [6] updates the HMM parameters %, A, and p(y  
 S , T ).n  m  k

The process is then repeated, now performing Viterbi ML estimation
on the refined HMM model. This again yields updated HMM
parameters, and the process is iterated until the changes in p(y , y ,1  2

..., y  
 T ) are less than a prescribed threshold, at which point theN  k

HMM is declared optimized for the available training data.

IV. Example Results

A. Submerged elastic targets considered

We consider measured acoustic backscattering data from
five submerged elastic targets: (1) a cylindrical air-filled shell; (2)

augmented by resiliently mounted, elastic internal rods; (4) a slightly
larger, nearly periodically ribbed shell; and (5) a duplicate of shell
4, with a large number (~1000) of attached internal oscillators.

targets are geometrically similar, providing a challenging test to the
HMM identification algorithm. Each of the targets was ensonified
by an acoustic waveform with bandwidth from approximately 11-40
KHz, corresponding to relative target dimensions of 2.9�ka�10.4,
where k is the wavenumber and a is the average target radius.
Finally, for each target, a five-state HMM was utilized.

B. Continuous vs. discrete HMMs

As an alternative to the continuous mixture density
defined in (2), one can use a discrete probability function to describe
the state-dependent distribution of the matching-pursuits parameter
vector y . This is done by defining J discrete elements c  in the FI-n          j

dimensional parameter space, with these elements constituting a
“codebook” C [7]. Each y , extracted via matching pursuits for then

nth scattered waveform f , is mapped to its nearest neighbor in Cn

(using the Mahalonobis distance [8]). In this manner, the continuous
FI--dimensional space is effectively discretized into J regions, with
b  representing the probability of realizing codebook element c  injm        j

jm

element codebook, and the vector % and matrices A and B are
optimized via the Viterbi algorithm [6]. The codebook was
generated via the K-means algorithm [7]. In Fig. 2 we show a
comparison of discrete and continuous HMM performance, as a
function of number of observations N, assuming 5  angular o

Figure 2. Average discrete and continuous HMM performance.
Average SNR: 20 dB. sampling. 
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For both the continuous and discrete HMMs, each target required
five states. The results in Fig. 2 are for noisy data, with the noise
having a power spectral density (PSD) identical to the spectrum of
the incident pulse, in an attempt to simulate additive clutter. For
both the discrete and continuous HMMs, training was performed by
using all 360 backscattered waveforms from each target (1  samplingo

was used in the measurements), and 15 noise realizations were
considered for each scattered waveform. Since there are 181 unique
observation sequences, we trained on 15×181 sequences. The testing
was performed using all possible sequences of the 360 backscattered
waveforms (for the N measurements characteristic of a given
sequence), and 4 noise realizations, i.e., 4×360 test sequences. Since
the noise realizations used for testing and training were different, the
HMMs were tested and trained on distinct data. In Fig. 2, N=10
samples corresponds to a total of 45   of data (5  sampling), foro    o

which we see an average misclassification probability of less than
0.1, for both the discrete and continuous HMMs.

C. Confusion matrix

The results in Fig.2 present the average misclassification
probability, for the discrete and continuous HMMs, a
misclassification defined as identifying the data as characteristic of
target T  when it was actually scattered from target T . Additionalk        i

information is presented in the form of a confusion matrix, as
presented in Tables 1 and 2, for the discrete and continuous HMMs,
respectively. Using the target designations described in Sec. IVA,
the confusion matrix considers data from target T , and quantifiesk

the probability that it is classified as target T , for i and k from onei

to five (for the five targets considered here). Several observations
can be made from these tables, which considered the same 20 dB
average SNR data presented in Fig. 2, for the case of N=5 scattered
waveforms (20  of data, with 5  sampling). First, as in Fig. 2, theseo    o

tables demonstrate that the continuous HMM consistently
outperforms its discrete counterpart. Moreover, for both the
continuous and discrete HMM, data from target 4 had the highest
probability of being properly classified. This is attributed to the
Bloch wave [9] excited on the ribbed shell, which is characterized
by an angle-dependent frequency that is clearly visible and distinct
[9]. From Tables 1 and 2 we also note that targets 2 and 3 are often
confused for one another. This is expected because, from Sec. IVA
and [9-11], these targets are very similar geometrically.

Table 1. Confusion matrix for the discrete HMM, in percent. acoustic response of a submerged shell,” JASA., vol. 101, pp. 895-

Table 2. Confusion matrix for the continuous HMM, in percent.

V. Conclusions

Wave-based matching pursuits and a hidden Markov
model (HMM) have been presented for the identification of
concealed or distant targets. We have utilized the underlying  wave
physics to build a wavefront-resonance dictionary and as motivation
for dividing the aspect-dependent scattered fields into “states”,
angular-dependent sectors over which the wave physics is slowly
varying. The results from this investigation clearly demonstrate the
superiority of the continuous HMM relative to its discrete
counterpart. 
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