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ABSTRACT

Partial likelihood (PL) provides a uni�ed statistical frame-
work for developing and studying adaptive techniques for
nonlinear signal processing [1]. In this paper, we present
the general formulation for learning posterior probabilities
on the PL cost for multi-class classi�er design. We show
that the fundamental information-theoretic relationship for
learning on the PL cost, the equivalence of likelihood max-
imization and relative entropy minimization, is satis�ed for
the multi-class case for the perceptron probability model us-
ing softmax [2] normalization. We note the ine�ciency of
training a softmax network and propose an e�cient multi-
class equalizer structure based on binary coding of the out-
put classes. We show that the well-formed property of the
PL cost [1, 7] is satis�ed for the softmax and the new multi-
class classi�er. We present simulation results to demon-
strate this fact and note that though the traditional mean
square error (MSE) cost uses the available information more
e�ciently than the PL cost for the multi-class case, the new
multi-class equalizer based on binary coding is much more
e�ective in tracking abrupt changes due to the well-formed
property of the cost that it uses.

1. INTRODUCTION

The probabilistic view of a neural network classi�er such
that the network outputs are associated with posterior class
probabilities is quite attractive for a number of reasons.
Among others, this view o�ers advantages both in under-
standing the properties of learning in neural networks and
in developing new approaches for learning. Partial likeli-
hood, on the other hand, provides a general probabilistic
framework for designing nonlinear classi�ers, and is partic-
ularly suitable for developing adaptive techniques for non-
linear signal processing. In [1], we introduce the use of PL
for nonlinear signal processing, demonstrate its successful
application in binary classi�cation, and show a fundamen-
tal information theoretic relationship, the equivalence of the
relative entropy minimization and likelihood maximization
provided that two regularity conditions are satis�ed. These
conditions are satis�ed for the binary multi-layer perceptron
(MLP) classi�er [1] and the �nite normal mixtures (FNM)
probability model [6]. In this paper, we �rst present the
PL formulation for the multi-class case, and then show that
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the regularity conditions are also satis�ed for the percep-
tron network that uses softmax normalization [2]. Note that
normalization is needed for the multi-class case to ensure
that the network outputs are valid probabilities.

The performance advantages of using the relative en-
tropic (or partial likelihood) cost are presented in [1] for a
binary classi�cation example. This is a direct consequence
of the well-formed property [7] of the relative entropic cost
which guarantees the recovery of steepest descent learning
from convergence at the wrong extreme, a property not
satis�ed by the mean square error (MSE) cost function.
The advantages of the probabilistic framework in learning,
shown with a number of numerical studies for binary clas-
si�cation [1, 4], do not easily carry to the multi-class case.
This is primarily because of the ine�ciency of using only the
true class label information during training, i.e., only one
target is nonzero for each sample during training. Hence,
typically the convergence of a multi-class classi�er that uses
a statistical cost function (such as relative entropy that
uses relative errors) is considerably slower than that of the
MSE cost that uses absolute errors [5]. In [4], a modi�ed
softmax normalization is used that eliminates the inher-
ent redundancy in the standard softmax and the training
is achieved by a Gauss-Newton scheme which is shown to
increase convergence rate considerably compared to learn-
ing by the Robbins-Monro procedure. In this paper, we
provide an alternative structure for estimating multi-class
probabilities in a feedforward network that is trained us-
ing the Robbins-Monro scheme but has faster convergence
characteristics. For a multi-class problem where the total
number of classes is given by M , we consider binary coding
of the classes and map the multi-class estimation problem
to estimation of dlog2Me binary probabilities. Such a for-
mulation is particularly convenient for applications in digi-
tal communications where the transmitted data are already
binary encoded. The scheme also provides possibilities for
incorporation of coding into the scheme to further decrease
the bit error rate. We present simulation studies for a chan-
nel equalization example that demonstrate the e�ciency of
the scheme for learning class probabilities in a 4-level pulse
amplitude modulation example. While the convergence of
the MSE based equalizer is still slightly faster than that of
the new multi-class equalizer that uses binary coding, the
new equalizer is much more e�ective in tracking parameter
changes since it directly inherits the well-formed properties
of the binary classi�er introduced in [1].



2. NEURAL NETWORKS AS ESTIMATOR OF

MULTI-CLASS POSTERIOR PROBABILITIES

Assume that we have a training set T ofN related input and
output pairs T = fxn;yng

N
n=1 and the problem is to train

the classi�er such that for a given observation yk, xk will
be assigned to one of m classes C1; C2; � � � ; Cm, such that
xk takes a value from a �nite alphabet S = fa0;a1; :::;amg.
The actual value that the random variable xk takes, i.e.,
the value ai is of consequence only in the case of training
using relative errors, e.g. when using the MSE cost.

Given the posterior class probabilities P (Cijy) for i =
1; 2; � � � ;m, Bayes classi�er will assign y to class Ci if P (Cijy)
> P (Cj jy) 8j 6= i, a choice which minimizes the clas-
si�cation error probability. Note that, the total distribu-
tion information, rather than that of the most likely class
only, can be useful depending on the particular applica-
tion. Since, the goal is the estimation of the probabilities
P (Cijy) 8ai 2 S, we can use a feedforward neural network
probability model such that

P�(Cijy) = fi(�;y) (1)

where � is the vector of network parameters which we can
estimate/ learn using the appropriate criterion. It is impor-
tant to remember that the probabilistic formulation brings
the additional constraint that the network outputs lie in the
range [0,1] and that

Pm

i=1 fi(�;y) = 1.
For the binary case, S = f0; 1g, and we only need to

estimate P�(C1jy) as P�(C2jy) = 1 � P�(C1jy). For ex-
ample, we can use the MLP probability model as shown in
[1]. For the general case of multiple classes however, to en-
sure that the network outputs are valid probabilities (i.e.,
they sum upto one), there is usually a second normalization
stage that is cascaded to the feedforward structure. The ex-
ponential normalization, the so-called softmax function [2]
has been the most popular for multi-class learning with the
likelihood cost. We can introduce softmax normalization
for a single hidden layer feedforward neural classi�er with
logistic activation function h(�) as

fi(�;yn) =
exp(�i)Pm

j=1 exp(�j)
(2)

where �j =
Pq

i=1
h
�
yn

Twi
�
vij with wi 2 RL�1 and yn 2

RL�1 and vij is the weight between the hidden node i and
the jth output node.

Note that, rather than modeling the probability mass
function (pmf), we can also choose probability models with
continuous outputs, i.e., can model the probability density
function (pdf) as a direct consequence of the Bayesian for-
mula as shown in [6].

3. PARTIAL LIKELIHOOD FORMULATION

AND THE INFORMATION-THEORETIC VIEW

We use a recent extension of maximum likelihood, the par-

tial likelihood (PL) theory [3] in [1] to develop a general
probabilistic framework for neural classi�ers which is par-
ticularly suitable for application to problems in which time-
ordering is essential (e.g. time-series problems), or can be

conveniently de�ned. To write the PL, consider the train-
ing set T and de�ne Fk as the �-�eld generated by the past
xi, i � k� 1, and the outputs (past covariate information)
yi, i � k � 1. It can also include the current output value
yk. Hence, Fk is a collection of all relevant events upto dis-
crete (time) instant k, i.e., represents the history at k and
Fk�1 � Fk, i.e, Fk is an increasing sequence of �-�elds. In
a time series problem where the observation vector is de-
�ned as yn = [yn; yn�1; � � � ; yn�L+1] and a new sample is
shifted in at each new time instant, the condition Fn�1 �
Fn is easily satis�ed. Also, the �ltration requirement on the
sigma-�elds allos us to easily handle missing data problems.

The PL is written as the product

LpN (�) =

NY
j=1

mY
i=1

fi(�;Fj)
Ti;j : (3)

where the indicator index Ti;j is de�ned as Ti;j = 1 if
xj 2 Ci and 0 otherwise. Note that to write the PL, we
de�ned a new probability P�(CijFn) which is conditioned
on all the past information available at the current instant
n rather than the current output yn. Hence PL provides
a formulation suitable for use of recurrent network proba-
bility models fi(�;Fj) and the PL theory can be used to
study properties of recurrent networks as well.

The relative entropy (RE), or the Kullback-Leibler dis-
tance, [?], on the other hand, is a fundamental information-
theoretic measure of how accurate the estimated probability
distribution p� is an approximation to the true probability

distribution p and is given by D(pkp�) = E
n
log p

p�

o
where

the expectation is with respect to the true distribution p.
The RE is always nonnegative and is zero only when the
two distributions match, p = p�. We can de�ne the accumu-

lated relative entropy (ARE) as the total Kullback-Leibler
discriminatory information contained in the training set T
as

IN (�) =

NX
j=1

Eflog
P (CijFj)

fi(�;Fj)
jFjg (4)

We assume that for �0, f(�) de�ned in (1) achieves the

true probability distribution and de�ne rj(�) � log
P�0

(CijFj )

fi(�;Fj)

which allows us to write the ARE as IN (�) =
PN

j=1
ij(�)

where ij(�) = Efrj (�)jFjg and de�ne Jn(�) =
PN

k=1 jk(�)
where jk(�) � V arfrk (�)jFkg: The expectations in the
above de�nitions are with respect to the true distribution
P�0(CijFj) 8ai 2 S. Based on these de�nitions, we estab-
lish the relationship between PL maximization and ARE
minimization for the general case of dependent observations
by the following theorem [1]:

Theorem: Given continuous functions fi(�) 8ai 2 S, if, for
each � 6= �0, there exists a constant � > 0 such that, as
N !1,

P (IN(�)=N > �) �! 1 (5)

and
JN (�)=N

2 �! 0 in probability (6)

then at least one arg min� IN(�) tends to one argmax� �LpN (�)

almost surely on 
 = f� j IN (�) " 1;
PN

i=1 ji(�)=I
2
i (�) <

1g where �LpN (�) � lnLpN (�).



Thus the optimal model parameters �0 have the funda-
mental information theoretic interpretation that they min-
imize the Kullback-Leibler information given a probabil-
ity model. Thus viewing learning as related to Kullback-
Leibler information minimization in this way implies that
learning is a maximum likelihood statistical estimation pro-
cedure. The proof of the theorem is given in [1].

The theorem establishes the equivalence of PL maxi-
mization and ARE minimization under two regularity con-
ditions. The �rst condition of the theorem, (5), represents
the rate by which the Kullback-Leibler information accu-
mulates with N , and guarantees that for each � 6= �0,
IN (�) ! 1 as N ! 1, i.e. the information continues to
accumulate. The second condition, (6), on the other hand
implies asymptotical stability of variance. The conditions
can be shown to be satis�ed for the perceptron probability
model [1] and the FNM model [6] for the binary case.

In what follows, we show that the two conditions of
the above theorem, (5) and (6), are satis�ed for a multi-
class perceptron classi�er using the softmax normalization
representation given in (2). We �rst write

ln fk(�;yn) = �k � ln[

mX
j=1

exp(�j)] (7)

Using the de�nition given for the theorem, we can write

in(�) = E[rn(�)jFn] = E[ln
p�0 (Ckjyn)

fk(�;yn)
jFn]

= E[ln p�0(Ckjyn)]�E[�k] + E[ln(

mX
j=1

exp(�j))]

=

mX
j=1

[ln p�0(Ck jyn)]p�0(Ckjyn)�

mX
j=1

�kp�0(Ckjyn)

+

mX
j=1

[ln(

mX
j=1

exp(�j))]p�0(Ckjyn) (8)

Since we assume � 2 �, where � is a compact parameter
set, �k is �nite. Thus the last two terms in (8) are �nite. We
can show that the �rst term is also �nite (when p�0 (Ckjyn)
is equal to 0, the term is 0 by de�nition.) Hence, in(�) is
�nite. From the de�nition of in(�), we know in(�) > 0,
for � 6= �0. So there exists a constant � > 0 such that, as
n!1, P (In(�)=n > �) �! 1. Similarly, we can obtain

jn(�) = V ar(rn(�)jFn) = E[(rn(�)� in(�))
2jFn]

= E[rn(�)
2jFn]� i2n(�)

= E[ln2(p�0(Ck jyn))]E[ln
2(fk(�;yn))]�

�2E[ln(p�0(Ck jyn)) ln(fk(�;yn))]� i2n(�)(9)

In the softmax model, 1 > fk(�;yn) > 0 because the ob-
servation vector is assumed to be �nite and the parame-
ter set compact, so the �rst three terms in (10) are �nite.
We have shown that in(�) is also �nite, thus jn(�) is �-
nite. From its de�nition, we have jn(�) � 0 which im-
plies

Pn

k=1 jk(�)=n
2 �! 0. Since, the two conditions in

the above Theorem are satis�ed for the softmax model, we
can estimate/learn the parameters of the softmax model

directly by PL maximization, which minimizes the ARE
distance between the true and estimated conditional prob-
abilities.

4. A MODIFIED MULTI-CLASS

PROBABILITY ESTIMATOR

The likelihood (or the relative entropy) cost that uses class
membership information during training is shown to yield
highly e�cient estimators. However, when we use the class
membership information to estimateM -class posterior prob-
abilities [2], or the M � 1 [4] probabilities by getting rid of
the inherent redundancy, the convergence rate is typically
very slow [5, 4]. To increase e�ciency in learning, we map
the problem to estimation of dlog2Me binary probabilities.
Though, the procedure implies de�nition of a possibly more
di�cult mapping to be learned and some loss of informa-
tion, it can provide easy bit-by-bit coding options in certain
applications and as we show by simulations yields highly
satisfactory performance. For example, consider a 4-level
pulse amplitude modulation (PAM) data transmission sys-
tem transmitting f�3;�1; 1; 3g. In our scheme, qw �rst
decide the sign of the transmitted symbol, then its ampli-
tude. In other words, we use 2 bits: b0 to represent the
sign bit and b1 the amplitude. When estimating the bi-
nary probabilities, we only need to estimate P�(C1jy) as
P�(C2jy) = 1 � P�(C1jy), hence in implementation result-
ing in dlog2Me network outputs instead of the M � 1 re-
quired in modi�ed softmax. This mapping of the problem
implies that the network shown in Figure 1 also satis�es
the conditions of the Theorem, (5) and (6) as this network
is now a special case of the MLP classi�er studied in [1].
We also show by simulations that, by this implementation
the convergence rate is increased considerably compared to
softmax, and the scheme is also very e�ective in tracking
abrupt changes. To derive the least relative entropy (LRE)
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Figure 1: Modi�ed Multi-class Probability Estimator

algorithm for the modi�ed multi-class probability estima-
tor, assume a MLP with N inputs, Q hidden units, and
L = dlog2Me outputs. For the activation functions of the
hidden and output layer, we use the hyperbolical tangent
activation function, and de�ne � lnLpn(�) =

Pn

i=1 li(�) to
write the cost function as

ln(�) =
XL

i=1

�
1 + bi
2

ln pn� +
1� bi
2

ln(1 � pn� )
�

(10)



where pn� � P�(bi = 1jyn)) and we assumed that the trans-
formation 1

2 [(�)+1] is applied to transform network outputs
to probability measures. Here, � = fw;vg is the network
parameter vector. Let wij denote the weight from the ith
input to the jth hidden neuron, vjl denote the weight from
the jth hidden neuron to the lth output, sj denote the out-
put after the activation funtion at the jth hidden neuron,

i.e., sj = tanh(
PN

i=1
wijyi). Gradient descent minimiza-

tion of the negative log PL cost function for this network
results in the following weight update equations:

vjl(n+ 1) = vjl(n) + �1sj(n)el(n) (11)

wij(n + 1) = wij(n) + �2yi(n)gj(n)

LX
l=1

vjl(n)el(n) (12)

for i = 1; 2; : : : ;N , j = 1; 2; : : : ;Q, l = 1; : : : ; L, with
gj(n) = 1�s2j(n). Here, �1, �2 are the step sizes, el(n) is the
error signal at the lth network output, el(n) = dl(n)�ol(n).

5. SIMULATION RESULTS

The performances of the LRE algorithm derived above is
compared with that of the softmax and the MSE based
MLP classi�er for a 4 level equalization problem. The
classi�cation problem is posed as, given the channel ob-
servations y(n) at the output of a nonlinear channel, deter-
mine the transmitted symbol x(n) that takes values from
f�3;�1; 1; 3g. The channel is selected as y(n) = yl(n) +
�y2l (n) + �(n) where yl(n) is generated by the response
H(z) = 1 + 0:5z�6, �(n) is the zero mean white Gaussian
noise, and the PAM communication system uses 8 bits per
sample with Nyquist pulse shaping. The performances of
the three algorithms are compared at 20 dB signal to noise
ratio (SNR) (SNR is de�ned in terms of the input signal
power to the noise variance). We use a 3-8-1 MLP neural
network to implement the MSE-MLP equalizer, and a 3-8-
3 MLP for softmax. For the LRE, the 4-level equalization
problem is reduced to estimation of 2 binary probabilities
by binary coding by using the mapping described in Section
4. Thus, a 3-8-2 MLP classi�er is used for the task.

To compare the best performances of di�erent algo-
rithms, the step sizes �1, �2 are separately chosen for each
classi�er. The convergence curves (with � = �0:02) shown
in Figure 2 are averaged over 25 independent runs. In
Figure 2, we can see that the LRE based equalizer has a
much faster convergence rate than the softmax equalizer
and a similar, slightly slower convergence rate than the
MSE-MLP equalizer. To show the recovery property of our
reduced complexity LRE equalizer, we introduce an abrupt
change (an exact sign change) in the channel characteristics
at the 5000th iteration. In Figure 3, we can observe that,
after the abrupt change, LRE based equalizer recovers very
rapidly, softmax also tracks quite e�ectively though it has
high error due to its initial slow convergence. The MSE-
MLP equalizer, however, recovers much slower. Hence the
modi�ed LRE provides a good tradeo� in providing consid-
erably faster convergence than the multi-level classi�er that
uses a normalization stage such as softmax and its conver-
gence rate approaches that of MSE based classi�er which
uses information much more e�ectively for the multi-class
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Figure 2: Convergence curves for (i) softmax (ii) MSE-MLP
(iii) LRE-MLP equalizers
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Figure 3: Tracking performance for (i) softmax (ii) MSE-
MLP (iii) LRE-MLP equalizers

case. However, by inheriting the well-formed property [7]
for learning on the PL (or ARE) cost with a MLP network
as shown in [1], LRE provides considerable advantages in
tracking performance over the MSE based MLP classi�er.
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