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ABSTRACT
This paper introduces the notion of nonlinear MMSE multiuser
detection and shows that MMSE signal estimates followed by sin-
gle user detectors yield MAP (or minimum probability of error)
decisions for CDMA signals. Iterative solutions are proposed for
nonlinear MMSE estimation. If interferers’ codes are assumed to
be known by the signal estimators for each user, the MMSE so-
lution is shown to be a fixed point which is reached in one iter-
ation, but is computationally intractable. If interferers’ codes are
not assumed to be known, the resulting iterative multiuser detec-
tor (called random-code NMIC) is shown to be of the same order
of complexity as a conventional multistage interference canceler.
Furthermore, the nonlinear MMSE solution is shown to be a fixed
point of the random-code NMIC. Particular solutions are presented
for the cases of BPSK and M-ary orthogonal spread spectrum sys-
tems. Audio demonstrations of random-code NMIC performance
can be found athttp://www.nd.edu/�aspect/.

1. INTRODUCTION

Optimal detection of signals in the presence of multiple access in-
terference (MAI) has been a topic of intensive research activity
due to its potentially vast benefits in CDMA systems. Maximum-
likelihood and minimum probability of error detectors are known
to be practically infeasible due to exponential computational com-
plexity in the number of users. On the other hand, the efficacy
of linear multiuser detectors is severely limited in the presence of
coding, block modulation, multipath propagation, asynchronism
and long spreading codes [1].

In this paper, we propose a novel multiuser detection strat-
egy based on nonlinear minimum mean-squared error1 (MMSE)
estimation of the signals received from each of the users. Specif-
ically, our objective is to compute MMSE (also maximum SNR)
estimates of all the users’ signals as functions of the composite
received signal and the codes of all users. The MMSE signal es-
timates, when passed through minimum distance single user (i.e.
matched filter) detectors, are shown to yield maximuma poste-
riori probability (MAP) decisions, i.e., minimum probability of
error decisions, on the transmitted signals of all users.

This work was supported by the National Science Foundation under
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1The term nonlinear MMSE is used in this paper to distinguish it from
the more widely used linear MMSE estimation. Nonlinear MMSE esti-
mates can also be linear (e.g. Gaussian random variables).

Exponential computational complexity of MAP decisions also
implies exponential complexity of exact computation of the non-
linear MMSE signal estimates. However, it is shown in this paper
that the nonlinear MMSE signal estimates can be approximated
using iterative algorithms. In this paper, we present a simple it-
erative algorithm derived by imposing an optimization procedure
in a multistage interference cancellation receiver. An important
result of this paper is to show that the nonlinear MMSE signal es-
timates are a fixed point of the proposed iterative algorithm. Fur-
thermore, specific realizations of the iterative algorithm in the im-
portant cases of BPSK and M-ary orthogonally modulated CDMA
systems are presented and are shown to be of the same complexity
as conventional multistage interference cancelers (also called par-
allel interference cancelers (PIC)). M-ary orthogonal modulation
is used on the uplink of the CDMA system specified by the IS-95
standard. The algorithms and propositions presented in this paper
are valid for both synchronous and asynchronous multiple access
systems.

The paper is organized as follows. Section 2 formulates the
nonlinear MMSE multiuser detection problem and presents the
general solution. It is shown in Section 2 that nonlinear MMSE
estimates with single user detectors yield minimum probability
of error decisions. Two iterative algorithms to approximate the
nonlinear MMSE estimates are proposed in Section 3, namely,
deterministic-code NMIC(nonlinear MMSE interference canceler)
andrandom-code NMIC. Also, Section 3 proves that the nonlinear
MMSE signal estimates are fixed points of both these algorithms.
Practical realizations of the random-code NMIC are described in
Section 4 for the cases of CDMA systems with BPSK or M-ary
orthogonal modulation.

2. NONLINEAR MMSE MULTIUSER DETECTION

Consider a multiple access digital communication system in which
K users are simultaneously transmitting signals to a central re-
ceiver. In a finite observation interval, all signals can be rep-
resented as vectors of their samples. These vectors can be ob-
tained either aschip-matched filteroutputs or simply by sampling
the baseband received signal at a sufficiently large sampling rate.
The received vector from thekth user can be written asrk =
rk(mk; ck), wheremk is the information-bearing message,ck
represents the channel and spreading codes, andrk(�; �) is a known
function that depends on the coding (if any), modulation and spread-
ing (if any) schemes, and channel characteristics. Messagemk is



drawn from a finite message alphabetSk. Both the messagemk

and codeck are treated as random quantities. The composite re-
ceived signal at the central receiver can be modeled as

r = r1 + r2 + � � �+ rK + v; (1)

wherev is zero-mean noise. We assume thatfr1; � � � ; rK ;vg are
mutually independent.

The general problem of multiuser detection is to decide which
of the possible signals was transmitted by each user, using the ob-
servationr and knowledge of the codesC

:
= [c1 c2 � � � cK ]. In

lieu of directly computing the MAP or ML decisions for the trans-
mitted signals [2, 3], we sought to computeestimatesof the sig-
nals received from each user,X = [r̂1 r̂2 � � � r̂K ] as a function of
(r; C), in a way that minimizes the MAI component in each user’s
signal estimate. Final decisions on the transmitted signals are
made by using a bank of single user detectors that operate on these
estimates with reduced MAI. If square of the distance between
two random vectors is measured in terms of the mean-squared
Euclidean 2-norm of their difference, an optimal estimation strat-
egy is to computeX such that for eachk, r̂k is closest tork (or,
equivalently, by maximizing the SNR in̂rk) among all functions
of (r; C). In other words, the objective is to obtain the nonlinear
MMSE estimate of thekth user’s signalrk, k = 1; � � � ; K, given
the observation(r; C). We denote the nonlinear MMSE estimate
byX� = [r̂�1 r̂�2 � � � r̂�K ] where fork = 1; � � � ; K,

r̂�k
:
= arg min

r̂k=r̂k(r;C)
Efkrk � r̂kk

2g: (2)

The solution to the nonlinear MMSE estimation problem is the
well-known conditional mean estimate (see, e.g., [4]), given by

r̂�k = Efrkjr; Cg; k = 1; � � � ; K: (3)

Besides being intuitively appealing, the nonlinear MMSE sig-
nal estimates facilitate MAP decisions on the transmitted signals
using simple single user detectors, as described in the following
observation. Note that this result is true in both synchronous and
asynchronous scenarios.

Proposition 1 Assume that the received signal from each user is
BPSK modulated or M-ary orthogonal modulated with direct se-
quence spreading. Then the nonlinear MMSE estimater̂�k fol-
lowed by a minimum distance single user detector yields the MAP
decision for thekth user’s signal, that is,

arg min
m2Sk

krk(m; ck)� r̂�kk
2 =

arg max
m2Sk

P [mk = mjr; C]: (4)

Sketch of Proof:Let rk;i be a sub-vector ofrk corresponding to the
ith symbol of userk, and letck;i be the corresponding sub-vector
of ck. We assume that different symbols of the same user are sta-
tistically independent. It can be shown that among all permissible
userk’s received vectors, the one closest tor̂�k is the one whose
sub-vectorsrk;i are closest to the corresponding sub-vectors inr̂�k

for all i. Also, the MAP decision forrk is composed of MAP de-
cisions for individual symbols inrk. Therefore, it is sufficient to
prove the equivalence of minimum distance from the MMSE esti-
mate and MAP decision for a single arbitrary symbol inrk. If the
signals are BPSK modulated, then

r̂�k;i = Efrk;ijr; Cg = Akck;iEfbk;ijr; Cg

= Akck;ifP [bk;i = +1jr; C]

�P [bk;i = �1jr; C]g; (5)

whereAk is thekth user’s received amplitude andbk;i = �1 is
the ith bit. It is clear from the above thatr̂�k;i is closer toAkck;i

than to�Akck;i if, and only if, P [bk;i = +1jr; C] > P [bk;i =
�1jr; C]. This concludes the proof for the BPSK case. If the
signal rk;i is drawn (after spreading) from an M-ary orthogonal
signal setS = fs1; � � � ; sMg with equal energies, then̂r�k;i is
closest tosj among all signals inS if, and only if, its correlation
with sj is maximum. The MMSE estimate ofrk;i can be written
as

r̂�k;i =
MX

j=1

sjP [rk;i = sj jr; C] (6)

Therefore, the correlation of̂r�k;i with sj is

hr̂�k;i; sji / P [rk;i = sj jr; C] (7)

Equation (7) implies that̂r�k;i is closest tosj if, and only if,
P [rk;i = sj jr; C] is the largest. This concludes the proof.

Proposition 1 implies that the MAP decision for thekth user
(that minimizes thekth user’s probability of error) can be obtained
by computing the MMSE signal estimater̂�k followed by a con-
ventional minimum distance single user detector for thekth user.
If we can compute (or approximate)X� with reasonable complex-
ity, this is practically attractive since minimum distance single user
detectors are extremely simple to implement. In the case of BPSK
spread spectrum signals, for instance, the minimum distance de-
tector is a matched filter (matched to the desired user’s spreading
code) followed by a hardlimiter.

We know from Verd´u’s work on optimal multiuser detection
(see, e.g., [3] and references therein) that minimum probability
of error detection is exponentially complex inK, the number of
users. Since the complexity of single user detection is linear inK,
this along with Proposition 1 implies that exact computation of the
nonlinear signal estimateX� is also exponentially complex inK.
Therefore, instead of computing the exact MMSE estimateX�, we
seek iterative solutions to approximate it.

3. ITERATIVE SOLUTIONS FOR NONLINEAR MMSE
MULTIUSER DETECTION

An extension to the idea of multistage interference cancellation
(see, e.g., [5]) to include an optimization procedure at each stage
is used here to approximate the nonlinear MMSE signal estimate
X�. In each iteration (stage) of a general multistage interference
canceler, past estimates of all the signals are used to subtract es-
timated interference from each user’s signal estimate. LetXn =
[r̂n1 r̂

n
2 � � � r̂

n
K ] denote the signal estimate after thenth iteration.

The iterations are started witĥr0k = r; k = 1; � � � ; K. If X (r; C)
is the space of all random matrices of the same size asX� that
are functions of(r; C), then the canceler defines a mappingM :
X (r; C) ! X (r; C) such thatXn = M(Xn�1). A canonical
mappingM for any multistage interference canceler is defined by
two operations, namely,estimationandcancellation. The estima-
tion operation involves computinga priori signal estimateŝrnjn�1

k

from thea posterioriestimateŝrn�1
k of the previous iteration. The

cancellation operation cancels thea priori interference estimates
as follows. For allk = 1; � � � ; K;

r̂
n
k = r�

X

i6=k

r̂
njn�1
i ; (8)

In a conventional multistage interference canceler, the estimation
operation is described bŷrnjn�1

k = rk(m̂
n�1
k ; ck), wherem̂n�1

k



is a hard decision on the transmitted symbol using a single user
detector (such as a matched filter detector) onr̂

n�1
k . This choice

of estimation procedure for each stage, however, leads to incorrect
cancellation of interference whenever a single user detector makes
an incorrect decision. Such cancellation errors are propagated to
the following stages of the canceler.

Since approximations to the conditional mean signal estimates
are required, we propose the following optimal estimation opera-
tion:

r̂
njn�1
k = Efrkjr̂

n�1
k ; Cg: (9)

The codes of all users are assumed known here for the estimation
operation. Therefore, we call the resulting multistage interference
canceler a deterministic-code NMIC. The following property of
the deterministic-code NMIC follows immediately.

Proposition 2 The nonlinear MMSE signal estimateX� is a fixed
point of the deterministic-code NMIC, and the fixed point is reached
in one iteration.

We use the following lemma to prove Proposition 2. Proof of
the lemma is omitted due to lack of space.

Lemma 1 If X, Y and Z are random variables, then

EfXjEfXjY; Zg; Zg = EfXjY; Zg: (10)

To see thatX� is a fixed point ofM defined by (8) and (9), let
Xn�1 = X�. From (9) and (10) it follows that

r̂
njn�1
k = Efrkjr̂�k; Cg = EfrkjEfrk jr; Cg; Cg

= Efrkjr; Cg = r̂�k: (11)

Further noting that
PK

k=1 r̂�k = r, we can conclude from (8) that
Xn = X� = Xn�1. That convergence is attained in one iteration
can be inferred by using the fact thatr̂0k = r; k = 1; � � � ; K; in
(8) and (9), withn = 1.

Note that computation ofX� is involved in the first iteration
of the deterministic-code NMIC. Therefore, the above description
of the deterministic-code NMIC only illustrates the convergence
property of the multistage cancellation structure, rather than pro-
viding a way to computeX�. More importantly, it leads us to
a practically feasible NMIC by relaxing the requirement to use
knowledge of all users’ codes in the estimation step. In particular,
we assume for the purpose of computingr̂

njn�1
k that all interfering

users’ codes are unknown and random, that is,

r̂
njn�1
k = Efrkjr̂

n�1
k ; ckg: (12)

We call this the random-code NMIC. (Note that the conventional
multistage interference canceler also does not use knowledge of
interferers’ codes to computêrnjn�1

k .) The following remarkable
property of the random-code NMIC, combined with its ease of
implementation, makes it an attractive iterative scheme to approx-
imate the nonlinear MMSE signal estimateX�.

Proposition 3 The nonlinear MMSE signal estimateX� is a fixed
point of the random-code NMIC.

The proof of this result also uses Lemma 1, and is very similar to
that of Proposition 2.

The above proposition indicates that the MMSE signal esti-
mateX� that is a function of all the users’ codes is a fixed point to

the NMIC that does not require explicit knowledge of signal cross-
correlations in each iteration. Since signal cross-correlations need
not be computed, the following section shows that the random-
code NMIC is particularly simple to implement when the num-
ber of users and spreading gain are large. The realizations of
random-code NMIC in two important cases—namely, direct se-
quence CDMA systems with BPSK modulation and M-ary orthog-
onal modulation—are considered next.

4. REALIZATIONS OF RANDOM-CODE NMIC

The only operation that needs to be specified to define a random-
code NMIC is the estimation operation (12), since the cancellation
operation (8) is identical in all multistage interference cancelers.
As noted in the proof of Proposition 1,rk;i is the sub-vector of
rk that corresponds to theith symbol. Since the conditional mean
estimate ofrk is comprised of conditional mean estimates ofrk;i

for all i, the estimation step can be broken down into symbol-by-
symbol estimation. We can therefore restrict our attention to com-
putingr̂njn�1

k;i for an arbitrary symboli. For convenience, we omit
the subscripti in the sequel.

In a direct sequence CDMA system that employs BPSK mod-
ulation,rk = Akbkck, wherebk 2 f�1;+1g. It is shown in [6]
that

r̂
njn�1
k = AkckEfbkjy

n
k g; (13)

whereynk is the output of the matched filter for userk with r̂
n�1
k

as input. If the number of users and the spreading gain are large,
thenynk conditioned onbk can be modeled as a Gaussian random
variable [6] with mean~An

kbk and variance�2k;n. Theeffectivere-
ceived amplitude~An

k is such that~A1
k = Ak, but ~An

k < Ak for
n > 1. The effective amplitude is determined by the correlation
that exists between the desired signal and interference at the output
of the matched filter in thenth iteration. The estimation operation
can then be computed as

r̂
njn�1
k = Akck tanh( ~A

n
ky

n
k =�

2
k;n); (14)

where�2k;n is the variance of interference plus noise at the output
of the kth user’s matched filter in thenth iteration. The use of
sigmoidal nonlinearity of the form of (14) for interference cancel-
lation has been proposed in [7] in a different context. A schematic
of the estimation operation is shown in Figure 1. The parameters
of the sigmoidal nonlinearity in (14), namely,~An

k and�2k;n, can be
estimated adaptively [6].

In a direct sequence CDMA systems with M-ary orthogonal
modulation, let the transmitted signal constellation (after spread-
ing) of thekth user beQk = fs1; s2; � � � ; sMg, whereksik2 = 1
for all i and si ? sj for all i 6= j. The kth user’s received
signal is given byrk = akxk, where the transmitted symbol
xk 2 Qk, and the complex received amplitude of userk is de-
fined asak = Ake

j�k whereAk is the received amplitude and�k
is the received carrier phase of userk. As in the case of BPSK
signals, it can be shown that

r̂
njn�1
k = akEfxkjy

n
kg; (15)

whereynk is the vector matched filter output in thenth iteration. It
is comprised of correlations ofr̂n�1

k with allM orthogonal signals
in the constellation. Again, for large number of users and spread-
ing gain, the matched filter output conditioned on the transmitted
symbolxk can be modeled as a Gaussian vector with mean~ankxk,
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Figure 2: Estimation operation in a random-code NMIC for M-ary orthogonal modulation

where~ank is theeffectivecomplex-valued received amplitude. The
estimation step can be computed as [6],

r̂
njn�1
k = ak

PM

j=1 zjsjPM

j=1 zj
; (16)

where
zj

:
= exp[Ref(~ank )

�
y
n
k;jg=�

2
k;n]; (17)

y
n
k;j being thejth element ofynk . If Walsh-Hadamard orthogo-

nal sequences are used, the estimation operation can be performed
efficiently using the Fast Hadamard Transform (FHT) and the In-
verse Fast Hadamard Transform (IFHT) as shown in Figure 2. In
the figure, multiplication by the complex conjugate of the spread-
ing code and computation of signal correlations via FHT constitute
matched filtering. This is followed by a multi-input-multi-output
(MIMO) sigmoidal nonlinearity to computêink;j = zj=

PM

l=1 zl.

These are used by the IFHT and respreader to computer̂
njn�1
k . As

before, the sigmoidal parameters can be estimated adaptively.
The computational complexity of random-code NMIC can be

seen from above to be of the same order as that of conventional
PICs, in both BPSK and M-ary orthogonal modulation cases. Au-
dio demonstrations from a simulated CDMA system using random-
code NMIC and conventional interference cancellation schemes
can be found at the web site [8].

5. CONCLUSIONS

A practically feasible iterative algorithm to approximate nonlinear
MMSE signal estimates in the presence of MAI was presented in
this paper. This algorithm can be used to compute approximate
minimum probability of error decisions on the transmitted signals.
Future work in this area includes convergence analysis of random-
code NMIC, realizations of random-code NMIC for coded data

and in the presence of multiple antennas, and performance evalua-
tion of random-code NMIC.
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