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ABSTRACT
The problem of generalized 2D FIR filtering for large filter
kernel sizes can be computationally prohibitive when required
in real-time, such as with video applications.  In this paper, we
describe architectures and design methods for generalized 2D
FIR filtering employing LOGIC Devices' LF33xx (HV Filter)
family of devices.  The LF33xx family of devices is designed
to perform dimensionally separate filtering (row/column)
along orthogonal axes (horizontal direction and vertical
direction for video applications).  Additionally, we will briefly
review 2D filter design and kernel separability theory.

1. INTRODUCTION

It is possible to achieve arbitrarily complex 2D filtering
through the use of separability theory [1].  In this paper, we
describe design techniques and practical architectures to
achieve filtering with arbitrary two dimensional filtering
kernels.

We show it is possible to design an arbitrary two dimensional
(2D) filter and then separate the kernel dimensionally into a
sum of  orthogonal one dimensional (1D) filter coefficient sets.
This is accomplished with the use of either an eigenvalue
expansion of the 2D kernel or with the use of the Singular
Value Decomposition (preferred method) [2].

In this note, we demonstrate the use of the Singular Value
Decomposition (SVD) in separating 2D kernels into sums of
1D outer products so that the sum can be implemented on
parallel or serial 1D filter configurations.  Following relevant
mathematical discussion, we proceed with an example kernel
design and then to architectural implementations.

2. 2D FIR KERNEL DESIGN  - A BRIEF
REVIEW

Myriad techniques exist for the design of 2D FIR filter
kernels.  Consult [1] for more details.  Two popular techniques
are the window method and the frequency transformation (or
McClellan transformation) method [1].  There are also various
proposed optimal least squares type methods [3].  The
techniques range from fairly simple to quite complex.  It is
only necessary to discuss one specific 2D FIR filter kernel
design technique in order to illustrate the principles here.  The
window method is chosen here to illustrate the technique.

The window method is derived from the 1D case [1].  That is,
a desired frequency response, Hd (ω1, ω2 ), is specified in the
ideal case and then a smooth window (e.g. Hamming,
Blackman-Harris, etc.) [4] is applied to the 2D ideal frequency
response
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where * is the convolution operator and W(ω1, ω2) is the
frequency response of the chosen window function.  The 2D
filter kernel must of course be respecified in the spatial
domain if spatial domain filters are to be used.  This leads to a
spatial specification as

h n n h n n w n nd( , ) ( , ) ( , )1 2 1 2 1 2=  (2)

where h(n1, n2) is the desired 2D filter kernel, hd (n1, n2) is the
spatial function of the desired filter response and w(n1, n2) is
the spatial specification of the window.  The 2D window
function is easily computed from a 1D window function as an
outer product, w(n1)w(n2), where w is identical in n1 and n2.  A
comprehensive window table can be found in [4] and [5].

3.  KERNEL SEPARATION VIA
ORTHOGONAL DECOMPOSITION

It is fairly well known that an arbitrary 2D function can be
decomposed into a sum of outer products of 1D orthogonal
functions [2].  This is represented as
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where h(n1, n2) is the 2D kernel function and hk1(n1) and
hk2(n2) are orthogonal 1D kernel sequences.

The 2D filter kernel is separated most generally with the use
of the Singular Value Decomposition (SVD) [6].  The SVD of
an arbitrary real matrix, Xm x n, is compactly represented as
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where Umxm and Vnxn  are orthonormal such that
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and Σmxn is a diagonal matrix of singular values whos rank
(which is equivalent to the number of non-zero diagonal
elements) determines P in the sum of (3).  A shorthand
notation is often used for Σ so that whenever m < n,

Σ = diag m( , , )σ σ σ1 2 � . (7)

The separation of the 2D kernel, H, into the 1D kernel
sequences, hk1 and hk2 (k = 1, 2, … P) is accomplished by the
extraction of m columns of U and V once the SVD has been
computed on the 2D filter kernel, H, according to (4).  This
suggests the following design steps:

1. Choose a 2D filter kernel design method and design the
kernel, H

2. Apply the SVD to H according to (4) so that H = UΣVT

3. Determine the 2D kernel rank (P = the number of non-
zero σi)

4. Extract P columns from U into hk1 sequences for the
horizontal/row filters

5. Extract P columns from V into hk2 sequences for the
vertical/column filters

First it should be noted that since U and V are orthonormal,
the 1D sequences are already orthonormalized.  The square
root of the energy has been removed into σι.  It should also be
noted that various approximations to the filter H can be
achieved by taking P' < P.  This can provide a very useful
approximation since a very large subclass of 2D filters fit into
P = 2 space.  P = 2 space is sufficient to represent most two-
fold and four-fold symmetry constraints.

3.1 Filter Coefficient Design Example

In this section, we use MATLAB®  [7] to perform the various
calculations necessary to completely specify a 2D filter in
terms of 1D coefficient sets.  In keeping with the steps listed
above, a 2D filter kernel is first designed using a 2D filter
design technique.

Step 1:  Design a 2D FIR Filter Using the 2D Window
Method

We use the following design parameters for the basic 2D filter
design:

1. Order = 15
2. Cutoff = 0.3 (Nyquist = 1)
3. Window = Hamming

The result of the filter design with the above parameters is
plotted in Figure 1.

It may not be apparent from the examination of the mesh  in
Figure 1 what the rank of H might be.  Recall from the
discussion above that the rank of the matrix will exactly
determine P.  Occassionally the rank of H can be predicted
based on careful examination of the contour of H.  The
contour

of H is shown in Figure 2 below where it can be seen that
four-fold symmetry is present.  When this type of symmetry

condition exists a second order separation can almost surely be
predicted.
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Figure 1:  2D FIR Filter Kernel Designed by 2D
(Hamming) Window Method
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Figure 2:  Contour of 2D FIR Filter Kernel H

Step 2:  Compute the SVD of H Using (4)

Step 3:  Determine the Rank of H from Σ

The diagonal of Σ has only two non-zero elements (0.2546 and
0.0220) in this case.  This also determines the rank of H as
two.

Step 4:  Extract P = 2 Columns from U

The coeficients for the horizontal filter are contained in the
first two columns of U, however, somewhere in the coefficient
sets, the appropriate gain terms (0.2546 and 0.0220) must be
applied.  Either U or V (or both when square-rooted) can
contain these terms.  If they are applied to U, the resulting sets
are graphed in Figure 3.
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Figure 3:  Normalized Horizontal Coefficients

Of course, these coefficients should be appropiately quantized
for the target DSP device.

Step 5:  Extract P = 2 Columns from V

The identical procedure is performed on V for the vertical
coefficients.  In this case, we quantize to 12 bit 2's
complement format and show the results in Figure 4.
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Figure 4:  12-bit Quantized Vertical Coefficients

This completes the coefficient design problem.  It is now of
interest to examine the architectural configurations necessary
for performing the 2D filter operation specified by the kernel
of Figure 1 and the coefficient sets of Figures 3 and 4.

4. HARDWARE CONFIGURATIONS

In this section, various architectures for performing
generalized 2D convolution filtering employing the LOGIC
Devices' LF3310, LF3320, and LF3330, along with their
tradeoffs, are explored.  The various architectures are the
usual serial cascade, parallel cascade, interleaved, and single
device interleaved.

The basic building block for multi-chip architectures capable
of handling 15 x 15 kernel sizes consists of one LF3320 device
and two LF3330 devices and one external 12 bit line buffer.
This is shown in Figure 6.
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Figure 5:  HV Building Block for 16 x 15 Separable
Kernels

Whenever any of the coefficient sets is assymmetric (as can be
the case in certain 2D separable kernels - especially for even
kernel sizes e.g. 16 x 16), the full hardware of Figure 5 must
be deployed.  For symmetric coefficient sets, certain
efficiencies are possible with the HV family of devices.  For
the general case, however, assymmetry is assumed.  Also, it is
important to understand that in the general assymmetric case,
coefficients should be loaded in reverse manner (relative to
data flow) to properly affect the convolution being performed.

If bus simplicity is a concern and the full 80 MHz rate these
devices are capable of is required, the 15 x 15 kernel of Figure
1 can be implemented in two serial cascades of the basic HV
building blocks as illustrated in Figure 6.  Numerical concerns
can arise when serial cascades are used and so it is important
that the full dynamic range of the output of the first stage be
available to the second stage via proper use of the RSL
(Round, Select, and Limit) circuit present on all LF33xx
devices (and so on if more stages are needed).  The reader is
referred to the data sheets of individual devices [8] on how to
properly set up this subfunction.  The only potential drawback
of the system of Figure 6 is that additional latency will occur
at the final output.  This could be an issue for some systems.
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Figure 6:  Serial Cascade for 2nd Order Separable 16 x
15 Kernels

For systems that demand the least latency in the throughput
and the greatest possible speed, the parallel cascade can be
used.  This is illustrated in Figure 7.  The only special
requirement is for proper data alignment into the L4C381
ALU device.
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Figure 7:  Parallel Cascade for 2nd Order Separable 16 x
15 Kernels

Since the LF33xx family of HV filters has the flexibility for
interleaving data streams, it may be possible to take advantage
of only one building block to implement second order
separable kernels up to 16 x 15.  This is possible because up
to 16 fully independent streams can run through the block (of
which only two streams are needed for second order separable
kernels).  The LF3330 can handle interleaved streams with the
one caveat that the maximum pixels per line will be cut in half
for each doubling of streams.  Also, the rate will obviously be
half of full rate for the two stream case.  This implies that 40
MHz is the maximum rate for second order separable kernel
filtering streams run interleaved.  The extra hardware required
for interleaving so that second order separable kernel filtering
can be achieved is displayed in Figure 8.
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Figure 8:  Interleave Operation for 2nd Order Separable 16
x 15 Kernels

Based on the discussion in the last paragraph, smaller
assymmetric kernel sizes (maximum of 16 x 8) can be
implemented with a single LF3310 in interleaved mode.
Again, for second order separable kernels, the maximum data
rate is 40 MHz.  The same external hardware configuration as
that shown in Figure 8 applies for this case.

Note it is possible to design coefficient sets for even ordered
kernels also.  This produces even symmetric coefficient sets as
opposed to odd symmetric coefficient sets as has been
designed here.

5. ACCURACY OF METHOD AND
CONCLUDING REMARKS

The accuracy of the separation method for 2D convolution
kernels depends on the order (or degree) of separability and
the chosen order with which to represent it, as discussed
before.  In full floating point, accuracy is very close to machine
precision.   Figure 9 displays the FP error surface between the
two filtered versions (full 2D and separable 2D) of a popular
MRI test image.

0
50

100
150

0

50

100

150
-2

-1

0

1

2

x 10
-13

Figure 9:  Error Surface Between 2D FIR and HV FIR
for a popular MRI Test Image
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