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ABSTRACT

This paper discusses a hidden Markov model (HMM) based on
multi-space probability distribution (MSD). The HMMs are widely-
used statistical models to characterize the sequence of speech spec-
tra and have successfully been applied to speech recognition sys-
tems. From these facts, it is considered that the HMM is useful for
modeling pitch patterns of speech. However, we cannot apply the
conventional discrete or continuous HMMs to pitch pattern model-
ing since the observation sequence of pitch pattern is composed of
one-dimensional continuous values and a discrete symbol which
represents “unvoiced”. MSD-HMM includes discrete HMM and
continuous mixture HMM as special cases, and further can model
the sequence of observation vectors with variable dimension in-
cluding zero-dimensional observations, i.e., discrete symbols. As
a result, MSD-HMMs can model pitch patterns without heuristic
assumption. We derive a reestimation algorithm for the extended
HMM and show that it can find a critical point of the likelihood
function.

1. INTRODUCTION

The hidden Markov models (HMMs) are widely-used statistical
models to characterize the sequence of speech spectra, and the per-
formance of HMM-based speech recognition systems have been
improved by techniques which utilize the flexibility of HMMs:
context-dependent modeling, dynamic feature parameters, mix-
tures of Gaussian densities, tying techniques, speaker/environment
adaptation techniques. From these facts, one can surmise that the
HMM is useful for modeling pitch patterns of speech, and further
modeling pitch patterns and speech spectra in a unified framework
with feature vectors which consist of spectral and pitch parame-
ters.

However, we cannot apply the conventional discrete or contin-
uous HMMs to pitch pattern modeling since pitch values are not
defined in the unvoiced region, i.e., the observation sequence of
pitch pattern is composed of one-dimensional continuous values
and discrete symbol which represents “unvoiced”. Several meth-
ods have been investigated [1] for handling the unvoiced region:
(i) replacing each “unvoiced” symbol by a random vector gener-
ated from a probability density function (pdf) with a large variance
and then modeling the random vectors explicitly in the continu-
ous HMMs [2], (ii) modeling the “unvoiced” symbols explicitly in
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the continuous HMMs by replacing “unvoiced” symbol by0 and
adding an extra pdf for the “unvoiced” symbol to each mixture,
(iii) assuming that pitch values is always exist but they cannot ob-
served in the unvoiced region and applying the EM algorithm [3].

This paper describes a new kind of HMM for pitch pattern
modeling, in which the state output probabilities are defined by
multi-space probability distributions (MSDs). Each space in the
MSD has its weight and continuous probability density function
whose dimension depends on the space. An observation consists
of ann-dimensional continuous vector and a set of space indices
which specify n-dimensional spaces. We assume that zero-
dimensional space has only one sample point which corresponds
to a discrete symbol. It is noted that the MSD is the same as the
discrete probability distribution if all spaces are zero-dimensional.
On the other hand, the MSD is the same as the continuousG-
mixture density if allG spaces aren-dimensional and the set of
space indices always contains all space indices. Accordingly, MSD-
HMM includes the discrete and continuous mixture HMMs as spe-
cial cases, and further can model the observation sequence com-
posed of continuous vectors with variable dimension including
zero-dimentional observations, i.e., discrete symbols. As a result,
MSD-HMMs can model pitch patterns without heuristic assump-
tion. Reestimation formulas for the extended HMM are derived,
and it is shown that the reestimation algorithm can find a critical
point of the likelihood function.

This paper is organized as follows. Multi-space probability
distribution and MSD-HMM are defined in Sections 2 and 3, re-
spectively. A reestimation algorithm for MSD-HMMs are derived
in Section 4. The relation between the conventional and the pro-
posed HMMs, and the application of MSD-HMM to pitch pattern
modeling are discussed in Section 5. Concluding remarks and our
plans for future work are presented in the final section.

2. MULTI-SPACE PROBABILITY DISTRIBUTION

We consider a sample space
 shown in Fig. 1, which consists of
G spaces:
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G[
g=1


g (1)

where
g is anng-dimensional real spaceRng , and specified by
space indexg. Each space
g has its probabilitywg , i.e.,P (
g) =

wg , where
PG

g=1
wg = 1. If ng > 0, each space has a probability

density functionNg(x), x 2 Rng , where
R
Rng Ng(x)dx = 1.
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Figure 1: Multi-space probability distribution and observations.

We assume that
g contains only one sample point ifng = 0.
Accordingly, lettingP (E) be the probability distribution, we have

P (
) =

GX
g=1

P (
g) =

GX
g=1

wg

Z
Rng

Ng(x)dx = 1: (2)

It is noted that, althoughNg(x) does not exist forng = 0 since

g contains only one sample point, for simplicity of notation, we
define asNg(x) � 1 for ng = 0.

Each eventE, which will be considered in this paper, is rep-
resented by a random variableo which consists of a continuous
random variablex 2 Rn and a set of space indicesX, that is,

o = (x; X) (3)

where all spaces specified byX aren-dimensional. The observa-
tion probability ofo is defined by

b(o) =
X

g2S(o)

wgNg(V (o)) (4)

where
V (o) = x; S(o) = X: (5)

Some examples of observations are shown in Fig. 1. An obser-
vation o1 consists of three-dimensional vectorx1 2 R3 and a
set of space indicesX1 = f1; 2; Gg. Thus the random variable
x is drawn from one of three spaces
1, 
2, 
G 2 R3, and its
probability density function is given byw1N1(x) + w2N2(x) +
wGNG(x).

The probability distribution defined in the above, which will
be refered to asmulti-space probability distribution(MSD) in this
paper, is the same as the discrete distribution and the continuous
distribution whenng � 0 andng � m > 0, respectively. Further,
if S(o) � f1; 2; : : : ; Gg, the countinuous distribution is repre-
sented by aG-mixture probability density function. Thus multi-
space probability distribution is more general than either discrete
or continuous distributions.
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Figure 2: An HMM based on multi-space probability distribution.

3. HMMS BASED ON MULTI-SPACE PROBABILITY
DISTRIBUTION

The output probability in each state of MSD-HMM is given by the
multi-space probability distribution defined in the previous sec-
tion. AnN -state MSD-HMM� is specified by initial state prob-
ability distribution� = f�jg

N
j=1, the state transition probability

distributionA = faijg
N
i; j=1, and state output probability distribu-

tionB = fbi(�)g
N
i=1, where

bi(o) =
X

g2S(o)

wig Nig(V (o)); i = 1; 2; : : : ; N: (6)

As shown in Fig. 2, each statei hasG probability density functions
Ni1(�),Ni2(�), : : :,NiG(�), and their weightswi1,wi2, : : :,wiG.

Observation probability ofO = fo1; o2; : : : ;oT g is written
as

P (Oj�) =
X
all q

TY
t=1

aqt�1qt bqt(ot)

=
X
all q;l

TY
t=1

aqt�1qt wqtlt Nqtlt(V (ot)) (7)

whereq = fq1; q2; : : : ; qT g is a possible state sequence,l =
fl1; l2; : : : ; lT g 2 fS(o1)�S(o2)� : : :�S(oT )g is a sequence
of space indices which is possible for the observation sequenceO,
andaq0j denotes�j .

The forward and backward variables:

�t(i) = P (o1;o2; : : : ;ot; qt = ij�) (8)

�t(i) = P (ot+1;ot+2; : : : ;oT jqt = i; �) (9)

can be calculated with the forward-backward inductive procedure
in a manner similar to the conventional HMMs. According to the
definitions, (7) can be calculated as

P (Oj�) =

NX
i=1

�T (i) =

NX
i=1

�1(i): (10)



The forward and backward variables are also used for calculating
the reestimation formulas derived in the next section.

4. REESTIMATION ALGORITHM

For a given observation sequenceO and a particular choice of
MSD-HMM, the objective in maximum likelihood estimation is
to maximize the observation likelihoodP (Oj�) given by (7), over
all parameters in�. In a manner similar to [4], [5], we derive
reestimation formulas for the maximum likelihood estimation of
MSD-HMM.

4.1. Q-function

An auxiliary functionQ(�0; �) of current parameters�0 and new
parameter� is defined as follows:

Q(�0; �) =
X
all q;l

P (O; q; lj�0) log P (O; q; lj�) (11)

In the following, we assumeNig(�) to be the Gaussian density with
mean vector�ig and covariance matrix�ig. However, extension
to elliptically symmetric densities which satisfy the consistency
conditions of Kolmogorov is straightforward. We will present the
following three theorems without extensive proofs1:

Theorem 1

Q(�0; �) � Q(�0; �0)! P (O; �) � P (O; �0) (12)

Theorem 2 If, for each space
g , there are amongV (o1),V (o2),
: : :, V (oT ), ng + 1 observationsg 2 S(ot), anyng of which are
linearly independent,Q(�0; �) has a unique global maximum as a
function of�, and this maximum is the one and only critical point.

Theorem 3 A parameter set� is a critical point of the likelihood
P (Oj�) if and only if it is a critical point of theQ-function.

We define the parameter reestimates to be those which maximize
Q(�0; �) as a function of�, �0 being the latest estimates. Because
of the above theorems, the sequence of resetimates obtained in this
way produce a monotonic increase in the likelihood unless� is a
critical point of the likelihood.

4.2. Maximization ofQ-function

For given observation sequenceO and model�0, we derive param-
eters of� which maximizeQ(�0; �). From (7),log P (O; q; lj�)
can be written as

log P (O; q; lj�)

=

TX
t=1

�
log aqt�1qt + logwqtlt + logNqtlt (V (ot))

�
: (13)

HenceQ-function (11) can be written as

Q(�0; �) =

NX
i=1

P (O; q1 = ij�0) log �i

1Complete description of the proofs can be found in [6].

+
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NX
i=1

GX
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X
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+
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i=1

GX
g=1

X
t2T (O;g)

P (O; qt = i; lt = gj�0) logNig(V (ot))

(14)

where

T (O; g) = ft j g 2 S(ot)g: (15)

The parameter set� = (�;A;B) which maximizes (14), subject
to the stochastic constraints

PN

i=1
�i = 1,

PN

j=1
aij = 1 andPG

g=1
wg = 1, can be derived as
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T

X
t2T (O;g)


0
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ng > 0 (20)

wheret(i; h) and�t(i; j) can be calculated by using the forward
variable�t(i) and backward variable�t(i) as follows:

t(i; h) = P (qt = i; lt = hjO; �)

=
�t(i)�t(i)

NX
j=1

�t(j)�t(j)

�
wihNih(V (ot))X

g2S(ot)

wigNig(V (ot))
(21)

�t(i; j) = P (qt = i; qt+1 = jjO; �)

=
�t(i)aijbj(ot+1)�t+1(j)

NX
h=1

NX
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�t(h)ahkbk(ot+1)�t+1(k)

(22)



From the condition mentioned in Theorem 2, it can be shown that
each�ig is positive definite.

5. APPLICATION TO PITCH PATTERN MODELING

The MSD-HMM includes the discrete HMM and the continuous
mixture HMM as special cases since the multi-space probability
distribution includes the discrete distribution and the continuous
distribution. If ng � 0, the MSD-HMM is the same as the dis-
crete HMM. In the case whereS(ot) specifies one space, i.e.,
jS(ot)j � 1, the MSD-HMM is exactly the same as the con-
ventional discrete HMM. IfjS(ot)j � 1, the MSD-HMM is the
same as the discrete HMM based on the multi-labeling VQ [7]. If
ng � m > 0 andS(o) � f1; 2; : : : ; Gg, the MSD-HMM is
the same as the continuousG-mixture HMM. These can also be
confirmed by the fact that ifng � 0 andjS(ot)j � 1, the reesti-
mation formulas (16)-(18) are the same as those for discrete HMM
of codebook sizeG, and ifng � m andS(ot) � f1; 2; : : : ; Gg,
the reestimation formulas (16)-(20) are the same as those for con-
tinuous HMM withm-dimensionalG-mixture densities. Further,
the MSD-HMM can model the sequence of observation vectors
with variable dimension including zero-dimensional observations,
i.e., discrete symbols.

While the observation of pitch has a continuous value in the
voiced region, there exist no value for the unvoiced region. We
can model this kind of observation sequence assuming that the ob-
served pitch value occurs from one-dimensional spaces and the
“unvoiced” symbol occurs from the zero-dimensional space de-
fined in Section 2, that is, by settingng = 1 (g = 1; 2; : : : ; G�
1), nG = 0 and

S(ot) =

�
f1; 2; : : : ; G� 1g; (voiced)
fGg; (unvoiced)

; (23)

the MSD-HMM can cope with pitch patterns including the un-
voiced region without heuristic assumption. In this case, the ob-
served pitch value is assumed to be drawn from a continuous(G�
1)-mixture probability density function.

Experiments in [8] have shown that the likelihood is increased
monotonically by calculating the reestimation formulas iteratively.
From the trained MSD-HMMs, we can generate pitch patterns
which approximate those of natural speech by using an algorithm
[9] for speech parameter generation from HMMs with dynamic
features. An example is shown in Fig. 3 without the explanation
of experimental conditions [8] because of limitations of space.

6. CONCLUSION

A multi-space probability distribution HMM has been proposed
and its reestimation formulas are derived. The MSD-HMM in-
cludes the discrete HMM and the continuous mixture HMM as
special cases, and further can cope with the sequence of observa-
tion vectors with variable dimension including zero-dimensional
observations, i.e., discrete symbols. As a result, MSD-HMMs can
model pitch patterns without heuristic assumption.

In the near future, we will present a speech synthesis system in
which sequences of speech spectra [10], pitch patterns [8] and state
durations [11] are modeled by MSD-HMM in a unified framework.
This system may synthesize speech with various voice character-
istics by applying a speaker adaptation technique developed for
speech recognition systems [12]. Pitch pattern modeling based on
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Figure 3: Pitch pattern generation based on MSD-HMM.

MSD-HMM may also be useful for enhancing the speech recogni-
tion performance.
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