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ABSTRACT

In this paper, we present a new QR based algorithm for
IIR adaptive filtering. This algorithm achieves a reduction
of complexity with regard to the IIR-QR algorithm by us-
ing a block reduction transformation. Moreover, this new
approach make it possible to directly transform fast FIR
algorithm into fastO (N) versions of the IIR algorithm.
Therefore, we derive a fast version of the algorithm from
the rotation-based lattice algorithm (QR-LSL). Simulations,
have proven the fast convergence and the good numerical
properties of both algorithms for systems satisfying the strictly
positive real (SPR) condition.

1. INTRODUCTION

The finite impulse response FIR structures are widely used
in adaptive filters, due to their simplicity. They benefit of
an important class of adaptive filtering algorithms. How-
ever, the infinite impulse response IIR structures seems to be
more suitable to some applications involving long impulse
response such as the acoustic echo cancellation. Unfortu-
nately, the complexity of these structures, due to some in-
herent problems (local minima for output error formulation
and biased solution for the equation error), make the deriva-
tion of efficient adaptive filtering algorithms rather diffi-
cult. The IIR filters generally use iterative gradient based
algorithms [8], which have slower convergence than recur-
sive least squares algorithms. A QR least squares adap-
tive algorithm IIR-QR have been proposed for IIR filtering
[4]. It minimizes a modified least squares criterion resulting
from a pseudo-linear regression (PLR) approximation [6].
This algorithm converge rapidly and has a reduced com-
plexity (still O

�
N2
�
) compared to iterative algorithms. A

fastO (N) version of this algorithm exists, but it is inher-
ently instable [3].

In the following, we present a new IIR adaptive filter-
ing algorithm based on a block decomposition of the trans-
formed data matrix. Then, our QR based IIR algorithm sim-
plifies to two FIR-like adaptive algorithms. It becomes then

easy to derive fastO (N) versions of this algorithm. We
derive a lattice structure QR-LSL like IIR adaptive filtering
algorithm. In the last section, simulations of the algorithm
and its fast version are given.

2. A QR BASED IIR ADAPTIVE FILTER

The adaptive algorithm tries to minimize the error between
the output of the adaptive filtery (n) and the desired signal
d (n)

e (n) = d (n)� y (n)

with the output of the filter

y (n) =

NX�1X
i=0

ai (n)x (n� i) +

NYX
i=1

bi (n) y (n� i)

wherex (n) is the input signal of the adaptive filter and
ai (n) (respectivelybi (n)) are the adaptive feedforward (re-
spectively feedback) weights.

We denote,r (n) the regression vector andw (n) the
weight vector of dimensionN = NX +NY

rT (n) =
�
xT (n) yT (n)

�
(1)

wT (n) =
�
wT
X (n) wT

Y (n)
�

with

xT (n) =
�
x (n) � � � x (n�NX + 1)

�
yT (n) =

�
y (n� 1) � � � y (n�NY )

�
wT
X (n) =

�
a0 (n) a1 (n) � � � aNX�1 (n)

�
wT
Y (n) =

�
b1 (n) b2 (n) � � � bNY (n)

�

In the least square approach the adaptive filter minimize
the following error criterion

J (n) =

nX
k=0

�2(n�k)
h
d (k)� rj

T

w
(k)w (n)

i2



with

rj
T

w
(k) =

�
xT (k) yj

T

w
(k)

�

yj
T
w
(k) =

�
yjw (k � 1) � � � yjw (k �NY )

�
and whereyjw (k) is the output of the adaptive filter when
the weights are frozen tow (n)

yjw (k) =

NX�1X
i=0

ai (n)x (k � i) +

NYX
i=1

bi (n) y (k � i)

The IIR-QR algorithm use the pseudo-linear regression
(PLR) approximation [6]. Thus, it minimizes the following
least square criterion

J 0 (n) =

nX
k=0

�2(n�k)
�
d (k)� rT (k)w (n)

�2

= kd (n)�X (n)w (n)k
2

with

X (n) =

0
BBB@

rT (n)
�rT (n� 1)

...
�nrT (0)

1
CCCA ; d (n) =

0
BBB@

d (n)
�d (n� 1)

...
�nd (0)

1
CCCA

This is achieved by applying a recursive QR decompo-
sition algorithm to update the triangular factor of the matrix
X (n) [5]

�
0T

R (n)

�
= Qv (n)

�
xT (n)

�R (n� 1)

�
�

�e (n)
�d (n)

�
= Qv (n)

�
d (n)

��d (n� 1)

�

It follows that, the optimal solution is given by solving
the triangular system

R (n)w (n) = �d (n) (2)

or otherwise expressed by partitioningR (n) and�d (n) (see
[1])�

RX (n) BXY (n)

 RY (n)

�
w (n) =

�
�dX (n)
�dY (n)

�
(3)

whereRX (n) (respectivelyRY (n)) is aNX � NX (re-
spectivelyNY �NY ) upper triangular matrix ,BXY (n) is
aNX �NY matrix and�dX (n) (respectively�dY (n)) is an
NX (respectivelyNY ) vector. Then by passingBXY (n) to
the right hand side of (3), the system (2) is converted into
two reduced complexity subsystems

RX (n)wX (n) = �d0X (n) (4)

RY (n)wY (n) = �dY (n)

with
�d0X (n) = �dX (n)�BXY (n)wY (n) (5)

In addition to this iterative transformation. We propose
then, to apply the following updation scheme

Qv
X (n)

�
xT (n) d (n) yT (n)

�RX (n� 1) ��d0X (n� 1) 


�
(6)

=

�
0T �eX (n) y0T (n)

RX (n) �dX (n) BXY (n)

�

Qv
Y (n)

�
yT (n) �dY (n)

�RY (n� 1) ��dY (n� 1)

�
(7)

=

�
0T �eY (n)

RY (n) �dY (n)

�

Consequently, these subproblem becomes equivalent to
two QR-RLS algorithms driven respectively by the input
signalsx (n) andy (n� 1). The two algorithms are inde-
pendent in the sense that the rotation based transformations
Qv
X (n) andQv

Y (n) are only identified by their correspond-
ing input datax (n) or y (n� 1) :

Moreover, we can verify from (6) thatBXY (n) is a rank
one matrix, and theBXY (n) need not to be computed ex-
plicitly. Since, the productBXY (n)wY (n) needed in (5)
is given by

BXY (n)wY (n) = yY (n)gX (n) (8)

with
�


X (n)
gX (n)

�
= Qv

X (n)

�
1
0

�

yY (n) = yT (n)wY (n)

Like the QR-RLS algorithm the output error of the algo-
rithm can be easily computed without the explicit computa-
tion ofw (n) as in [7]

e (n) = 
Y (n) �eY (n)

Then, the filter output is computed by

y (n) = d (n)� e (n) (9)

The desired input signal for the first QR-RLS algorithm
(6) is the global desired responsed (n), whereas the de-
sired input signal for the second algorithm (7) is�dY (n) =
�eX (n) =
X (n). And the filter partial output is given by
yY (n) = �dY (n) � e (n), this achieves the computation of
�d0X (n) using (5) and (8).



The IIR adaptive algorithm, thus obtained is called IIR-
BQR as it involves two Block’ QR decompositions. It re-
duces the complexity of the IIR-QR algorithm [4] by ap-
proximately a factor of 2. It also reduces the hardware com-
plexity of the parallel architecture required for its imple-
mentation by the same factor. Moreover, the major com-
plexity of the new algorithm is retort between the two up-
dation steps ofRX (n) andRY (n). These steps can be
computed independently, and so they can be, efficiently, im-
plemented on a biprocessor architecture.

Furthermore, the IIR-BQR is suited to fast implementa-
tion. In fact, the fast QR-RLS algorithms for FIR adaptive
filtering can be used to derive fastO (N) IIR adaptive al-
gorithms when using this IIR filtering formulation. A fast
algorithm based on the fast QR-RLS algorithm is derived
in [2] for the FIR multichannel adaptive filtering, it can be
easily modified for our IIR context. In the following, we
present a fast lattice IIR algorithm based on the QR-LSL
algorithm [9].

3. A FAST LATTICE IIR ALGORITHM

The QR-LSL algorithm (Table IV of [9] ) is presented here
with a different steps’ order. This algorithm will be applied
to both subproblems as in equations(6) and (7), therefore,
the subscript ’Z’ will refer to letters ’X’ or ’ Y’ to differenti-
ate variables relatives to first (X) or second (Y) subproblems.
The subproblem algorithms X and Y are first presented in
Table-1. Then, we present the necessary additional steps to
these two QR-LSL algorithms.

for n = 1 : L
f0Z (n) = b0Z (n) = xZ (n)
e0Z (n) = dZ (n)
for p = 1 : NZ

1-Q2

�
�bZ;p (n)

�� bZ;p�1 (n� 1) eZ;p�1 (n� 1)
�Rb

Z;p (n� 1) ��eZ;p (n� 1)

�

=

�
0 eZ;p (n� 1)

Rb
Z;p (n) �eZ;p (n)

�

2- 
Z;p (n� 1) = 
Z;p�1 (n� 1) cos �bZ;p (n)

3-Q2

�
�bZ;p (n)

�� fZ;p�1 (n)
��bZ;p (n� 1)

�
=

�
fZ;p (n)
�bZ;p (n)

�

4-Q2

�
�fZ;p (n)

�� fZ;p�1 (n) bZ;p�1 (n� 1)

�Rf
Z;p (n� 1) ��fZ;p (n� 1)

�

=

�
0 bZ;p (n)

Rf
Z;p (n) �fZ;p (n)

�

Table-1 QR-LSL algorithm applied to FIR-like part Z
(Z�X or Y)

whereQ2 (�) is the2�2 rotation matrix of angle�, and
p is the recursive order of the algorithm.

The QR-LSL algorithm [9] is a rotation based LSL al-
gorithm, it is mathematically equivalent to the LSL algo-

rithm [5]. It differs from the standard QR-RLS by its lat-
tice parametrization, so our previous derivation of the al-
gorithm quantities is still valid, except forr (n) andw (n).
The regression vector is no longer formed ofx (k) andy (k)
samples, it is denotedr0 (n) and it contains the decoupled
bX;p�1 (n� 1) andbY;p�1 (n� 1) samples.

Whereas, the corresponding parameter vector is� (n)
such thatr0T (n)� (n) = rT (n)w (n) [5]. It follows, that
the transformationQv

Z (n) corresponds toN transforma-
tionsQ2

�
�bZ;p (n)

�
; (p = 1; : : : ; N), and the vector�dZ (n)

corresponds to�eZ;p (n) ; (p = 1; : : : ; N). This leads to the
new iterative transformation (similar to equation (5))

�e0X;p (n) = �eX;p (n)� yY (n� 1)GX;p (n) (10)

with�

X;p (n� 1)
GX;p (n)

�
= Q2

�
�bZ;p (n)

�� 
X;p�1 (n� 1)
0

�

andyY (n� 1) = dY (n� 1)� e (n� 1)
Consequently, the step 1-X1 (Table-1) of the first algo-

rithm (Z�X), is transformed as in (6) to step 1’-X

Qv
X (n)

�
bZ;p�1 (n� 1) eZ;p�1 (n� 1)
�Rb

Z;p (n� 1) ��e0Z;p (n� 1)

�

=

�
0 eZ;p (n� 1)

Rb
Z;p (n) �eZ;p (n)

�

This first algorithm is initialized byxX (n) = x (n) and
dX (n) = d (n), while the second algorithm is initialized by
xY (n) = y (n� 1) anddY (n) = eX;NX (n) =
X;NX (n).
This later initialization involves the filter outputy (n� 1)
which is computed as in (9) byy (n� 1) = d (n� 1) �
e (n� 1). In order to initialize convenientlyfY;0 (n) =
y (n� 1), we modify the Y-algorithm as follows :

� Computation of steps 1-Y and 2-Y (forp = 1 : NY ) .

� Then, we are able to compute

e (n� 1) = 
Y;NY (n� 1) eY;NY (n� 1)

fY;0 (n) = y (n� 1) = d (n� 1)� e (n� 1)

� Computation of steps 3-Y and 4-Y (forp = 1 : NY )

Finally, we complete the algorithm by the transforma-
tion of equation (10).

4. SIMULATION

The algorithms are simulated using the same system model
as [4]. This model is often used to simulate acoustic transfer

1the letter X here indicate the algorithm X (Z�X) to which the step
belongs.



path in teleconference systems. It is defined by the follow-
ing feedback polynomial

B
�
z�1

�
= 1� �iz

�10

and an arbitrary vector of feedforward coefficients

a1 = (1; 1:52;�0:92;�0:87; 0:55; 2:37;

1:44;�1:41;�0:28;�0:73;�0:48)

We start the simulation for�1 = 0:8 , then we change
abruptly the system at samplet = 2500 to the new value
�2 = 0:95 and the new feedforward coefficients vector

a2 = (1;�0:66; 0:54; 0:53;�0:68; 0:38;

1:74;�0:20; 1:13;�0:54;�1:05)

These two systems satisfy the strictly positive real (SPR)
condition.

In figure-1 , we consider a noisy identification scheme
with an SNR=15dB and a forgetting factor� = 0:97. The
mean square error MSE is averaged over 100 runs monte-
carlo simulations. This figure shows a good convergence
properties of both the IIR-BQR and the fast Lattice algo-
rithm, which are comparable to the performance of the IIR-
QR [4]. However, we have never noticed during simulations
any indication of numerical stability problems.
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Figure 1: MSE vs. time for IIR-QR, IIR-BQR and fast Lat-
tice algorithm

5. CONCLUSION

We presented in this paper a new QR based adaptive IIR fil-
tering algorithm (IIR-BQR). Besides, its reduced complex-
ity (about the half) compared to the IIR-QR, this algorithm

is also highly parallelizable. Then, we derived a fast O(N)
version of this algorithm which use a lattice parametriza-
tion, simulation showed that this fast algorithm is numeri-
cally stable.
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