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ABSTRACT

In this paper, we propose a two-stage transform design tech-
nique for Multiple Description Transform Coding. The first
stage is the structure design in which we enforce a Scaling-
Rotation factorization of the transform and we further con-
strain the transform for specific channel conditions using
the knowledge of the input correlation matrix and the de-
sired output correlation matrix. In the second stage, mag-
nitude design, we find the optimal transform from all ad-
missible transforms given by the structure design using the
numerical algorithm proposed by Goyal et al. [1]. Such
a design enables a structured transform framework which
reduces both the design and implementation complexities
compared to an exhaustive search through the whole space
of nonorthogonal transforms. We give two examples to il-
lustrate the design idea, the Scaling-Hadamard transform
for equal rate channels and the Scaling-DST transform for
sequential protection channels.

1. INTRODUCTION

Multiple Description Coding (MDC) has recently been shown
to be effective as a diversity technique for robust commu-

nication over erasure channels [2, 3, 4]. The problem of

two-description coding was first formulated by El Gamal

and Cover [5]. Different MDC systems have since been pro-

posed in the literature, which include the design using a

Multiple Description Scalar Quantizer, (MDSQ)[6, 3] and

the design using a correlating transform [2, 7, 1, 4].

In this paper we study a Multiple Description Trans-
form Coding (MDTC) system as shown in Fig. 1 [8]. The
input data is first decorrelated using T (e.g. KLT/DCT).
After quantization, another transform 7% is applied to recor-
relate the data which is split over different channels for
transmission. Since there exists correlation between de-
scriptions, the receiver can estimate the lost descriptions
from received descriptions in case of channel failures. The
design of a MDTC system focuses on the search for optimal
redundancy rate-distortion points by designing the corre-
lating transform 7. In the sequel, we consider only the
design of T5.

For a pair of Gaussian random variables with two out-
put channels, Orchard et al. [7] and Goyal et al. [1] have
shown that nonorthogonal transforms perform better com-
pared to orthogonal transforms in terms of redundancy rate-
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Figure 1: A typical MDTC system

distortion gain. For MDTC systems with M inputs and M
outputs, the transform design and its performance analysis
is still an open problem. Orchard et. al [7] suggested a re-
dundancy allocation strategy among pairs of input variables
but optimal pairing is not yet readily available. A numer-
ical optimization algorithm was proposed by Goyal et al.
[1] to design transforms for arbitrary number of channels.
However, exhaustive search through the whole space of all
nonorthogonal transforms is not only computationally in-
tensive but also leads to implementation difficulties when
using an arbitrarily structured nonorthogonal transform.

In this paper, we propose a two-stage transform design
technique for Multiple Description Transform Coding, i.e.,
structure design and magnitude design. The motivation
is that protection properties of a MDTC system can be
characterized by the output correlation matrix, i.e., which
descriptions are correlated (structure) and to what extent
they are correlated (magnitude). While the magnitude in-
formation can not, in general, be quantified for specific re-
dundancy and distortion constraints, the structural infor-
mation can be inferred from specific channel conditions or
protection requirements. Consequently, the structure de-
sign will find admissible transforms (eigenmatrices of the
output correlation matrix) using a Scaling-Rotation (SR)
factorization and the magnitude design will search for the
optimal transform from these admissible transforms. Such
a design enables a structured transform framework and re-
duces both the design and implementation complexities be-
cause we have imposed some structures on the space of
transforms to be searched.

The remainder of this paper is organized as follows. In
Section 2, we give the two-stage transform design approach
based on parametric Scaling-Rotation transforms for the
design of MDTC systems with M inputs and M outputs.
In Section 3, we give two design examples for equal rate
channels and sequential protection channels. Simulation
results of Gaussian vectors and analysis of MDTC systems
are given in Section 4. We conclude our work in Section 5.



2. PROPOSED TRANSFORM DESIGN APPROACH
FOR MDTC

For MDTC of pairs of independent Gaussian random vari-
ables, an important result is that, nonorthogonal transforms
are better than orthogonal transforms in terms of the redun-
dancy rate-distortion gain [7, 1]. For a given central distor-
tion, the nonorthogonal transform not only achieves lower
average side distortion using same amount of extra bits,
it can also extend the redundancy rate-distortion function
to the region that the orthogonal transform can not reach.
However, nonorthogonal transforms pose two challenges to
the MDTC system design:(1) quantization has to be per-
formed before the transform which requires that the trans-
form has to be an integer transform (mapping integers to in-
tegers); (2) the problem of optimal transform design based
on the numerical algorithm by Goyal et al. [1] becomes
computationally intensive with the increase of M since the
number of parameters increases quadratically (O(M?) for a
MxM transform); and (3) the numerical algorithm [1] may
lead to an optimal transform arbitrarily structured which
increases implementation difficulties. The next two sections
will study these issues in turn.

2.1. Parametric Transforms and Factorizations

To solve the first problem, we will design the transform
directly from its QR factorization [9]. This factorization
exists for any matrix with linearly independent columns,
either square or nonsquare. We mention that nonsquare
transforms are special cases of frame expansions which have
also been used to add redundancy for MDTC [4]. To reduce
the design complexity, we only consider square transforms
in this work.

Using our notations we write QR factorization as T =
RU where R is an orthogonal transform and U is an upper
triangular matrix. In fact, the upper triangular matrix U
can be further decomposed as a product of a scaling matrix
S and another lifting matrix L (an upper triangular matrix
with diagonal entries all 1). In other words, any transform
can be written as a concatenation of three transforms, a
Lifting transform L, a Scaling transform S and a Rotation
transform R (orthogonal transform), i.e., T'= RSL. To re-
duce the design complexity, we only study SR transforms in
this work, i.e., T = SR. To guarantee lossless factorization,
we have to impose the constraint that the determinant of T’
has to be set to one, i.e., det(T) = det(SR) = det(S) = 1.

Next we show SR transforms can be factored into lifting
steps hence can be implemented losslessly. We first present
factorization results for 2x2 rotation and scaling transforms

(adapted from [10]).
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It is well known [9] that any orthogonal M x M matrix Qar
can be factored into the product of M (M —1)/2 orthogonal
matrices, each of which is a M x M Givens rotation which
only rotates two components at a time. This indicates that
any orthogonal transform can be factorized into lifting steps
using the result of 2x2 rotation transform. Factorization of
a scaling transform is also very straightforward since we re-
quire its determinant to be 1. It can be shown that such
MxM scaling transform can be written as a concatenation
of M — 1 subscaling transforms, each of which only scale
two input variables at a time. Hence we can use the fac-
torization result of a 2x2 scaling matrix. Thus we have
shown that any SR transforms can be factored into lifting
steps hence can be implemented losslessly. The parametric
Scaling-Rotation (SR) transform assumes the form

T(A,©) = R(®)S(A) (1)
where A are scaling factors and ® are Givens rotation an-
gles.

X1 —@ > Y1
S >M f -V
v ® /s -
| |
? <
o — {0 -

Figure 2: Lattice structure of a SR transform

The general structure of a SR transform is shown in
Fig.2 which has a lattice structure similar to that of a
biorthogonal filterbank. The perfect reconstruction prop-
erty is guaranteed by such a transform framework. To
derive the inverse transform, one only need to change all
the rotation angles to the opposite sign and multiply by
the inverses of the scaling factors. Using such a SR trans-
form framework, we can also design the integer transform
directly rather than obtaining the integer transform from
lifing factorization of the designed non-integer transform.
Thus we can completely eliminates the lifting factorization
stage and helps to improve the system design accuracy by
avoiding unnecessary rounding errors.

2.2. Two Stage Transform Design

Although SR transforms enjoy structured lattice implemen-
tations, the number of design parameters of an MxM SR
transform still increases quadratically (O(M?)). In this sec-
tion we propose a two-stage design technique making use of
the available channel information to further constrain the
SR transform and reduce both the design and implementa-
tion difficulties.

Let Rx = diag{c}},i = 1,2,---, M be the correlation
matrix of input vector X. Let Ry = {ri;},¢,7 =1,2,---, M
be the correlation matrix of the transform output Y. Then
we have

T(A,®)RxT(A,®)"
R(®)RsR(®)"

Ry (2)

(3)



where Rs = S(A)RxS(A) = {ao}},i = 1,2,---,M is
a diagonal matrix. We can see that the rotation transform
R(®) has to be the eigenmatrix of the required output cor-
relation matrix Ry. If the output correlation matrix can
be predesigned, then the problem of correlating transform
design can be formulated as the inverse problem of matrix
diagonalization. An orthogonal solution to the correlating
transform is simply the inverse of KL transform. In gen-
eral, we can not pre-design the output correlation matrix
subject to redundancy and distortion constraints, however,
we can infer its structural information for specific channel
conditions or protection requirements. For example, equal
rate channels require the output correlation matrix to have
equal diagonal entries for Gaussian inputs. Thus admissible
transforms have to be able to generate correlation matrices
with equal diagonal entries.

Based on such observations, we propose a two stage
transform design approach, i.e., structure design and mag-
nitude design. The structure design finds admissible trans-
forms (eigenmatrices of the output correlation matrix) for
specific channels using the Scaling-Rotation (SR) factor-
ization framework. In Fig.3 we show that the transform
search space can be reduced gradually using available chan-
nel information (details in next section). The magnitude
design then searchs for the optimal transform from admis-
sible transforms using the algorithm described in [1] where
derivation details of the average side distortion Ds(A, ®)
and the redundancy bit rate p(A,®) are given. We per-
form a redundancy constrained transform design using a La-
grangian multiplier A. The cost function is J = D (A, ®)+
Ap(A,®). By varying A, one can scan all the operational
redundancy rate distortion points (Ds, p).

Nonorthogonal
Transforms det(T)=1

Figure 3: Transform search space.

3. MDTC DESIGN EXAMPLES

We give design examples for two important channels, equal
rate channels and sequential protection channels, both of
which can be characterized by the output correlation ma-
trix Ry. It turns out for these two special channels, not
only can we use fixed rotation transforms but also these
fixed transforms have fast algorithms. Using a fixed rota-
tion transform, we can reduce the number of design param-
eters from M — 1(A)+ M(M —1)/2(®) = (M? + M —2)/2
to only M —1. This makes the optimization converge faster
and reduces the amount of information to be conveyed to
the decoder. On the other hand, fast algorithms reduce
both the encoding and decoding complexities.

3.1. Equal Rate Channels

The equal rate channels requires that output descriptions
have same rates which helps the buffer management (e.g.
packetization/depacketization in a packet network) both at

the encoder and the decoder. We mention that equal rate
should be interpreted in a statistical sense. For example,
two Gaussian sources with same variances will be viewed
as equal rate sources if quantized with the same quantizer.
That is to say, for Gaussian random variables, “equal rate”
requires that the Ry to have equal diagonal entries. Here
we provide a SR transform which generates equal rate de-
scriptions for arbitrary number of channels with M = 2.

The equal rate transform we propose is a Scaling Hadamard

transform.
T(A) = HS(A) (4)

We need to show, under this transform, for input X, Ry
has equal diagonal entries (equal variances), i.e., r;; = 7,0 =
1,2,---, M and r is a constant.

Since the Hadamard transform H is real symmetric,
the output correlation is Ry = HRsH. Denote H =
{hij},i,j = 1,2,---,M. We have hj; = 1,V(i,j). The
output Y component variance r;; can be written as

M

M
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Thus we have shown a Scaling-Hadamard (SH) transform
generates equal rate descriptions. We mention that this
Scaling-Hadamard transform reduces to the optimal equal
rate transform given by Goyal and Kovacevic [1] when M =
2 which demonstrates that, at least for two descriptions cod-
ing, SR transform does not compromise the optimality of
the MDTC system. We also note that the cascaded struc-
ture given by Goyal et al. [1] is equivalent to a Scaling
Hadamard transform for M = 4.

3.2. Sequential Protection Channels

Another example channel is the sequential protection chan-
nel in which descriptions are sent out sequentially and each
description will only protect the losses of its immediate pre-
decessor and its immediate successor. In a lossy packet net-
work, an example scenario is that when each packet carries
information for the recovery of its previous and next pack-
ets, e.g. a similar case when Robust Audio Tool technique
is applied for audio transmission [11]. For a MDTC sys-
tem, this indicates that the output correlation matrix Ry
should be a tridiagonal matrix in which descriptions are
sequentially correlated. The Ry assumes the form

1 p 00 -+ 0
p 1 p 0 -~ 0
0 p 1 p - 0
Ry = , o (5)
0 --- 0 p 1 p
0 - 00 p 1

From matrix theory, we know that the eigenmatrix for this
type of symmetric tridiagonal Toeplitz matrices is the Dis-
crete Sine Transform (DST) [12]. So the transform we pro-
pose for sequential protection channels is the Scaling-DST
transform

T(A) = DST S(A) (6)



4. SIMULATION RESULTS AND DISCUSSIONS

In this experiment, we compare results of different configu-
rations of the correlating transform for a 4D Gaussian vec-
tor source with standard deviations {1,0.5,0.3,0.1} [7]. We
compare the side distortion when there is only one descrip-
tion lost with equal channel failure probabilities. The differ-
ent transforms are (i) Rotation; (ii) Scaling-Rotation; (iii)
Scaling-Hadamard; and (iv) Scaling-DST. The configura-
tion Scaling-Hadamard is equivalent to the cascaded struc-
ture given by Goyal and Kovacevic (Fig.3 in [1]) for a 4-D
input vector. The optimization is done via Powell’s direc-
tion set technique [13]. The initial scaling factors are all set
to be 1s and initial rotation angles are all set to be /4 for
the Scaling-Rotation configuration.

Scaling-Rotation
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Rotation

Side distortion (dB)
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Figure 4: Comparisons among different transforms.

The comparison of all four configurations is shown in
Fig.4. Clearly all the nonorthogonal transforms achieve
better performances compared to the orthogonal transform
(case (i)). This indicates that nonorthogonal transforms

can also perform better than orthogonal transforms for MDTC

systems of more than two channels. We also observe perfor-
mance degradations when we impose constraints on the ro-
tation transform, Scaling-Hadamard or Scaling-DST trans-
form, specially at higher redundancy bit rates. However,
using structured transforms, we reduce the transform pa-
rameters necessary to be delivered to the decoder and we
also reduce the implementation complexities. It is inter-
esting to note that the Scaling-Hadamard transform has
approximately the same performance as the Scaling-DST
transform when there is a single description lost.

However, the disadvantage for a complete MDTC sys-
tem design (refer Fig.1) is that, using a nonorthogonal trans-
form necessitates a framework which needs two transforms,
T, for decorrelation (before quantization) and T% for recor-
relation (after quantization), both at the encoder and de-
coder. Obviously, this increases the system implementa-
tion complexity. If an orthogonal transform is used, then
one can merge T> with T; into one transform to reduce
the computation. Such a single transform can decorre-
late and recorrelate simultaneously the input vector and
has been studied in the context of vector quantization as
Karhunen-Loeve Vector Transform (KLVT) [14]. Such an
alternative to the MDTC system design provides a tradeoff
between redundancy-rate distortion gain and the computa-
tional complexity which may be useful for delay-constrained
coding applications such as streaming-video over Internet.

5. CONCLUSIONS AND ACKNOWLEDGMENTS

In this paper, we have proposed a two-stage transform de-
sign approach, structure design and magnitude design, for
MDTC systems using SR transforms. Such an approach en-
ables us to find structured transform solutions using avail-
able channel information thus reduces both the design and
implementation complexities. Examples are given for equal
rate channels using SH transforms and for sequential pro-
tection channels using SDST transforms.
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