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ABSTRACT

How to train a speech recognizer with limited amount of
training data is of interest to many researcher. In this paper,
we describe how we use BBN’s Byblos large vocabulary
continuous speech recognition (LVCSR) system for the mil-
itary air-traffic-control domain where we have less than an
hour of training data. We investigate three ways to deal with
the limited training data: 1) re-configure the LVCSR system
to use fewer parameters, 2) incorporate out-of-domain data,
and, 3) use pragmatic information, such as speaker iden-
tity and controller function to improve recognition perfor-
mance. We compare the LVCSR performance to that of the
tied-mixture recognizer that is designed for limited vocab-
ulary. We show that the reconfigured LVCSR system out-
performs the tied-mixture system by 10% in absolute word
error rate. When enough data is available per speaker, vocal
tract length normalization and supervised adaptation tech-
niques can further improve performance by 6% even for this
domain with limited training. We also show that the use of
out-of-domain data and pragmatic information, if available,
can each further improve performance by 1-3%.

1. INTRODUCTION

In our previous papers [1] [2], we have reported speech
recognition results on the air-traffic control (ATC) domain
using the tied-mixture recognizer that is designed for lim-
ited vocabulary. In recent years, research in large vocabu-
lary continuous speech recognition (LVCSR) has made tre-
mendous progress. Many sites have been reporting more
than 10% relative error rate reduction each year in tasks
such as Switchboard and Wall Street Journal transcription.
Most of the recognition systems use millions of parameters
that can only be trained with tens to hundreds of hours of
data in the desired domain. In the ATC domain, the amount
of training data is orders of magnitude less. The question is
then how to use an LVCSR system for a domain with limited
training data.

In this paper, we describe three approaches to use
BBN’s Byblos LVCSR system for the military air-traffic
(MATC) domain where we have less than an hour of train-
ing data. First, we show how to re-configure the LVCSR
system to use fewer parameters, and examine the effective-

ness of two techniques that have been very successful in
LVCSR: vocal tract length normalization and unsupervised
speaker adaptation. Second, we incorporate out-of-domain
data to augment the limited training. We introduce the use
of supervised adaptation technique to incorporate out-of-
domain acoustic training data. Third, we incorporate prag-
matic information, such as speaker identity and controller
function that are available to the MATC domain. We com-
pare the LVCSR performance to that of a tied-mixture rec-
ognizer that is designed for limited vocabulary and find the
re-configured LVCSR engine to be superior. When enough
training is available per speaker, both the vocal tract length
normalization and the unsupervised adaptation techniques
are effective. We also show that the use of out-of-domain
data and pragmatic information, if available can further en-
hance performance.

The remaining portion of the paper is organized as fol-
lows. In Section 2, we describe the Greenflag corpus and
compare its characteristics with the Switchboard Corpus on
which Byblos is developed. In Section 3, we describe our
approaches to deal with limited data, including the reconfig-
uration of Byblos, incorporation of out-of-domain data and
incorporation of pragmatic information. In Section 4, we
describe our experiments and we conclude with a discus-
sion in Section 5.

2. MILITARY AIR TRAFFIC CONTROL AND THE
GREENFLAG CORPUS

The Military Air Traffic Control (MATC) domain consists
of off-the-air recorded conversations between military pilots
and controllers. Similar to the civilian ATC, these record-
ings consist of sequences of interleaving exchanges between
different pilots and a single controller. The length of these
exchanges can vary from several words to several tens of
words. The language is highly constrained but the acoustic
quality is quite poor. The language and acoustic quality dif-
fer between pilots and controllers. While in civilian ATC,
pilots converse only to controllers and never among them-
selves, this is not the case in MATC where pilots within a
flight group sometimes talk to each other.

The Greenflag (GNFG) Corpus is made up of a number
of recorded sessions of U.S air force exercises. Each session



contains about 5 minutes of speech. In addition, different
controllers are marked for their functions, such as approach,
tower or ground. In Table 1, we summarize the data char-
acteristics of the GNFG Corpus as compared to the Logan
Corpus (LG) of civilian ATC and the Switchboard (SWBD)
corpus of telephone conversational speech. We notice that
the amount of data per speaker is limited for GNFG pi-
lots. The signal to noise ratio (SNR) reported in Table 1
is measured by comparing the 65-th energy percentile to the
5-th percentile. The SNR of GNFG pilots is significantly
worse than any other corpora. Perplexity is measured using
a trigram language model on our held-out test-set. The per-
plexity of the GNFG corpus is significantly lower than other
corpora, reflecting the highly structured language. The oov
% denotes the rate of out-of-vocabulary (oov) as measured
by the proportion of word tokens in our test-set that is not
observed in training. The oov rate is significantly higher in
GNFG partly because of the limited amount of training data.
It is also caused by the fact that military flight call-signs are
made up of randomly selected flight names such as “echo”
or “viper” which rarely overlap between training and test.

3. HANDLING LIMITED TRAINING DATA

We propose three different approaches to handle limited
training data. First, we reconfigure the LVCSR engine to
reduce the number of parameters. Second, we incorporate
out-of-domain acoustic and language model training data.
Third, we try to capitalize pragmatic information that is
available in the MATC domain.

3.1. Re-configure Byblos for limited data
Byblos is a continuous density HMM-based recognizer [3]
that uses phonetic models to represent its vocabulary. Each
phone is represented by a 5-state HMM and its state obser-
vation distribution is represented by Gaussian mixtures. By-
blos maintains two types of phonetic model, the phonetic-
tied-mixture (PTM) model and the State-clustered-tied mix-
ture (SCTM) model. They differ by how they tie model
parameters. The coarser PTM model uses a single set
of Gaussians for each context-independent phone to rep-
resent the observation distributions. This set of Gaussians
is shared across all context-dependent phones of the same
center phone. Separate mixture weights are estimated for
different states of different context-dependent phones. The
more detailed SCTM model uses a more general sharing
strategy and allows states of the same context-independent
phones to use different set of Gaussians. Search in Byblos is
done in multiple passes. In the first few passes, the coarser
PTM non-crossword models are used in conjunction with a
bigram language model. In the last pass, the more detailed
SCTM crossword models are used in conjunction with a tri-
gram language model.

The limited amount of training in the GNFG Corpus re-
quire us to reduce the number of parameters used in Byb-
los. Of the two types of model in Byblos, the SCTM model

requires a lot more parameters. Even with the built-in back-
off in state-clustering, the amount of training by GNFG is
far too limited for SCTM. Instead, we use only the PTM
model. One variable that controls the number of parame-
ters in the PTM model is the number of Gaussian mixtures.
For a PTM model withK Gaussians per phone, the num-
ber of parameters is2LKD+NK, whereL is the number
of context independent phones,N is the number of context-
dependent phones with unique mixture weights andD is the
number of features. Thus, the number of Gaussians to use,
while dependent on the amount of training data, is also de-
pendent on the number of context-dependent phonesN . We
determine the bestK for the GNFG corpus experimentally.

VTL normalization [4] and unsupervised speaker adap-
tation [5] are very successful techniques in the SWBD tran-
scription task where each has shown to reduce the absolute
word error rate by approximately 4%. Both techniques aim
at reducing the variability between speakers by estimating
some compensation factors for each speaker. In VTL, the
compensation factor is a single frequency warp per speaker.
In unsupervised adaptation, the compensation factors are a
number of linear transformations. Being able to robustly es-
timate these compensation factors is the key to the success
of these techniques and is dependent on the amount of data
per speaker. Furthermore, since VTL stretch is estimated
at the front-end, it may be more sensitive to the SNR. The
unsupervised adaptation on the other hand, relies on the er-
rorful transcription from the recognizer and its performance
may be dependent on the recognition accuracy.

In SWBD, the amount of data per speaker (conversation
side) is around 2.5 minutes. In GNFG, the condition differs
dramatically between pilots and controllers. For controllers,
the amount of data per speaker is comparable to SWBD
while pilots have very limited data per speaker. Controllers
also have better SNR than pilots. In Section 4, we report
results of using VTL and unsupervised speaker adaptation
on GNFG pilots and controllers.

3.2. Using Out-of-domain Data
One approach to deal with limited training is to incorpo-
rate training data from out-of-domain. However, pooling
the data together can dilute the contributions of in-domain
training. For acoustic modeling, instead of pooling the in-
domain and out-of-domain data, we use supervised speaker
adaptation to perform domain adaptation. First, we train
our acoustic model using out-of-domain data from domains
such as LG or SWBD. This forms our basic acoustic model.
Then we use our in-domain training data and its train-
ing transcription to estimate adaptation transformations that
shift the out-of-domain model to the space of the in-domain
data.

For language modeling, we use a weighted combination
scheme that was first proposed in [6]. A metric measuring
the similarity between the out-of-domain data and the in-



Corpus Corpus size (hr) Data/spkr (sec) Sent. len. (sec) SNR Data type Perpl. Voca. size OOV (%)
SWBD 160 150 2.0 22 telephone 100 25K+ 1
LG ctrl. 2.5 730 3.8 15 radio 20 800 1
LG pilot. 1.8 14 2.6 16 radio 39 650 12
GNFG ctrl. 0.75 142 2.8 21 radio 19 600 13
GNFG pilot. 0.5 12 1.6 12 radio 20 500 10

Table 1: Data characteristics of GNFG, LG and SWBD

domain training is estimated on each piece of out-of-domain
data. This similarity is then used to weight the relative im-
portance of the out-of-domain data when combining with
the in-domain data.

Our techniques of combining out-of-domain data im-
plicitly assume that some similarity between the out-of-
domain data and in-domain data exist such that the transfor-
mations or weighting can steer the model to the right place.

3.3. Using Pragmatic Information
In this section, we consider two pieces of pragmatic in-
formation, the speaker identity and the controller function.
From a practical point of view, there are only a limited
number of controller in the tower and knowing which one
it is can be instrumental in improving the recognition per-
formance. Similar argument can be made on the controller
functions.

Suppose a test speaker is identified and is one of the
training speakers. What is the best way to use this in-
formation? One approach is to use a speaker dependent
model. Given the limited amount of data we have in GNFG,
building a speaker dependent model is impossible. We
take the approach of using supervised speaker adaptation to
transform the speaker independent model closer to the test
speaker.

When the the controller function is known, we can use
this information in building a function-specific language
model. However, a function-specific model, similar to
speaker dependent model in acoustic modeling, causes frag-
mentation of data. Instead, we use an approach similar to
the use of out-of-domain data. We consider the function-
specific data as in-domain and the general data as out-of-
domain and apply the exact algorithm as describe above for
incorporating out-of-domain language modeling data.

4. EXPERIMENTS
4.1. Paradigms
Our GNFG training data consists of a total of 35 minutes
of controller and 24 minutes of pilot speech. The test data
consists of 10 minutes of controller and 6 minutes of pilot
speech. There are a total of 14 different controllers and 130
different pilots in training and 10 different controllers and
71 different pilots in test. Separate models are built for pilot
and controllers because of their differences in acoustic and
language characteristics. Test and training come from dif-
ferent recording sessions. However, 3 speakers out of the 10

speakers in the controller test is also in training. For exper-
iments using out-of-domain data, a total of 131 minutes of
Logan ATC controller data is used consisting of 10 speak-
ers.

Except for the contrast experiment using the tied-
mixture recognizer, all recognition experiments use the By-
blos recognizer. A total of 45 features are used, includ-
ing the normalized energy, 14 cepstral coefficients, and
their first and second order differences. A PTM cross-word
model is used in conjunction with a trigram language model.
VTL normalization is applied per speaker for both pilots and
controllers. Results for all recognition experiments are re-
ported in terms of word error rates.
4.2. Experiments
We performed two sets of experiments. In the first set, we
test the baseline Byblos system by selecting the best number
of Gaussians in the PTM model. Then, we test the effective-
ness of unsupervised adaptation and VTL normalization. In
the second and third set, we tested the use of out-of-domain
data and use of pragmatic information for the controllers
only, where VTL normalization is applied but unsupervised
speaker adaptation is not.

Five different PTM model sizes are tested as shown in
Table 2. We notice that the best size for both pilots and con-
trollers are 64 Gaussians mixtures. It should be noted that
the fewer the number of Gaussians, the faster the recogni-
tion speed since a significant portion of recognition process-
ing time is spent on evaluating the Gaussian mixtures. Thus,
while we use 64 Gaussians for in our experiments, the 32
Gaussian mixtures is a good choice for a faster implemen-
tation.

We test the effectiveness of VTL normalization for both
pilot and controllers and the results are shown in Table 3.
The controllers improves by 2.5% while the pilots degrade
by 8.5%. We also test the effectiveness of unsupervised
adaptation for both pilot and controllers with VTL and the
results are shown in Table 4. We notice that unsupervised
adaptation improves recognition performance of controllers
by about 4% absolute which is consistent with the gain in
the SWBD corpus. However, it helps pilots only by 1%.
Comparing the amount of data per speaker as tabulated in
Table 1, we notice that the controllers have around 2.5 min-
utes on average per speaker which is very similar to that
of the SWBD speakers. The pilots, however, have only 14
seconds of training and its SNR is 12 compare to 20 of the



Speakers number of mixtures
256 128 64 32 16

Controllers 39.8 38.6 36.7 37.8 40.4
Pilots 52.0 51.9 49.7 52.2 55.0

Table 2: Finding the best number of Gaussian mixtures per
phone

Speakers with VTL without VTL
Controllers 36.7 39.3
Pilots 49.7 41.1

Table 3: Effect of VTL on pilots and controllers

controllers.
We can also compare the Byblos result with those of

the tied-mixture system [1] that is trained under compara-
ble condition. On a slightly smaller test-set on controllers
without VTL normalization nor adaptation, the tied-mixture
system gives a recognition error of 47% while the Byblos
system gives a recognition error of about 36% showing that
the use of the LVCSR system can be re-configured to out-
perform a limited vocabulary system.

We tested the effect of adding LG data for both acous-
tic modeling (AM) and language modeling (LM) as tabu-
lated in Table 5. The experiments reported are on con-
trollers only using VTL with a GNFG trained trigram lan-
guage model. We notice that the use of supervised adapta-
tion improves recognition by 1.4% while the adaptation of
language modeling data hurts slightly. We also report the
result of using the LG acoustic model and SWBD acous-
tic models as is. While using LG only or SWBD only is
significantly worse (8%) than using GNFG, it is interesting
to see the use of SWBD with 120 hrs of training of very
different channel is comparable to the use of LG with 2.5
hrs of similar channel. One possible explanation is that the
degradation due to channel mismatch is compensated by an
increase in training. On the other hand, the addition of LG
data for language modeling is not useful. It is not surprising
given that the use of LG language model doubles the word
error rates indicating that the language is quite different be-
tween GNFG and LG.

We also tested the effect of using supervised speaker
adaptation on 3 GNFG controllers and the effect of adapt-
ing the tower controller function. The results are tabulated
in Table 6. We notice that the supervised adaptation im-
prove recognition by about 3%. It should be noted that the
speakers’ data are already used in training the model before
adaptation. For the activity adaptation on language model,
we obtained a 0.5% gain. Similar to that of the supervised

Speakers Unadapted Adapted
Controllers 36.7 33.2
Pilots 41.1 40.3

Table 4: Effect of adaptation on pilots and controllers

Expts. GNFG LG SWBD LG + GNFG
AM 36.7 46.3 45.2 35.3
LM 36.7 77.0 – 37.0

Table 5: Effect of using out-of-domain data in word error
rate

Experiments Before Adaptation Adapted
Acoustic Model 29.4 26.4
Language Model 31.1 30.5

Table 6: The effect of pragmatic information on recognition
word error rate

adaptation result, training for this activity is already part of
the original training before adaptation. For a test set of this
size, this gain may not be statistically significant.

5. DISCUSSION

In this paper, we showed that the by using PTM model with
64 Gaussian components, the Byblos LVCSR system out-
performs the tied-mixture system by approximately 10%.
VTL normalization and unsupervised speaker adaptation
further improve the controller performance by 6.5%. These
techniques, however, are not as useful on pilots probably
due to insufficient data per speaker and poor acoustic qual-
ity. We further show that supervised adaptation technique
can be used to transform models trained for a different do-
main to the target domain. Knowing the identity of a test
controller speaker who is also in training can further im-
prove the recognition performance by 3% and knowing the
controller function is marginally useful.
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