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ABSTRACT

This paper presents an approach to routing telephone calls auto-
matically, based upon their speech content. Our data consist of a
set of calls collected from a customer-service center with a two-
level menu, which allows jumping past the second level, and we
view the routing of these calls as a topic-identification problem.
Our topic identifier employs a multinomial model for keyword
occurrences. We describe the call-routing task in detail, discuss
the multinomial model, and present experiments which investigate
several issues that arise from using the model for this task.

1. INTRODUCTION

Topic identification has been explored for several data sets, as
in [2] for conversations in the Switchboard corpus and in [1], [3],
and [5] for routing telphone calls after eliciting a response to the
question, “How may I help you?” In this paper we take up the
problem of topic identification for a call-routing task in which
prompts constrain callers’ responses but occur hierarchically and
allow for jumping levels of the hierarchy.

In Section 2 we discuss the call-routing problem we have con-
sidered, introducing the features of the problem that lead to system-
design questions. Section 3 gives a brief overview of topic identifi-
cation in general, explains our choice of the multinomial model for
word generation, and reviews the theory of the model’s estimation.

Section 4 gives experimental results using the model to resolve
various issues presented by the problem. To begin we show that
exploiting sub-classifications by using a hierarchical decision pro-
cess is worse than deciding on all classifications at once. We also
consider two types of utterances—those for which specific key-
words have been elicited, and those for which the responses have
been left open—and demonstrate that the classifier’s performance
on a test set of keyword-elicited utterances is greatly enhanced by
the addition to the training set of open-response utterances. In
addition, we show that using theN -best hypotheses from an auto-
matic speech recognizer can bring the performance of the classifier
to near its level on human transcriptions.

2. THE CALL-ROUTING PROBLEM

Our call-routing problem consists in labelling the responses to pre-
recorded prompts of callers to a customer-service center. The set
of labels is fixed at each prompt, and indicates in which one of
an array of services the caller is interested—or that the caller’s
intention is not in the set of categories and must be passed to an
operator. The labels then allow calls to be routed appropriately.
Before discussing the general task of labelling utterances based on
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Figure 1: A tree representation of the two-level routing problem.

their topic in Section 3, we describe the pecularities of the call-
routing problem at hand.

2.1. Two-Level Routing

Our data set includes responses to two pre-recorded prompts. At
the first,main-menu prompt, we are to determine to which of four
categories the caller’s problem belongs; we denote these categories
by routing labelsS0; : : : ; S3. S0 is a “rejection” label, indicating
that the caller’s response does not fit (or cannot be determined to
fit) one of theS1; S2, or S3 categories and so must be handed to
an operator. Calls in the remaining three categories are passed on
to further pre-recorded prompts. Of these, we limited our study to
S1-labelled calls. TheseS1-calls are passed to a second,sub-menu
prompt, which asks users for responses enabling us to refine theS1
classification to six sub-categoriesT0; : : : ; T5. Again,T0 denotes
that the call must be handled by an operator.

In addition, responses may be labelled with one ofT0; : : : ; T5
at the main-menu prompt if the caller gives enough information
there, thus allowing “jumping” past the sub-menu. Figure 1 demon-
strates the menu structure and corresponding routing labels as a
decision tree.

Paying attention only to the sub-menu for responses of typeS1
allows us to study a two-level topic-identification problem but fo-
cusses the task to its minimum. If we view the labelling procedure
as the decision tree in Figure 1, we are saying thatT1; : : : ; T5 are
the onlynon-operator leaf-node labels. For our purposes, these
labels denote exactly those utterances which may be completely
categorized without being sent to an operator, and thus comprise a



subset of particular interest.
Restated, then, our task is automatically to label responses to

the main-menu prompt with one ofS0; : : : ; S3; T0; : : : ; T5 and re-
sponses to the sub-menu prompt with one ofT0; : : : ; T5.

2.2. Directed-Response versus Open-Response Prompts

For this study we collected responses to two types of prompts.
Directed-response promptsinclude a specific keyword or phrase
for each topic label to induce the caller to respond with the word or
phrase appropriate to his or her request.Open-response prompts,
by contrast, do not offer a set of words matching the routing classi-
fications. The open-response prompt from our data set is, “Please
tell me the reason for your call.” This is similar to the prompt,
“How may I help you?” considered in [1].

Directed-response prompts should present an easier routing
problem. In the most extreme case, the problem is reduced to a
speech-recognition task: if all callers repeat exactly the prompted
words corresponding to their request, routing is simply a matter of
figuring out which words they have said. Two complications arise
with directed prompts, however, in our routing task. First, peo-
ple are not so compliant as to repeat exact words or phrases from
prompts and sometimes use their own words. Second, the two-
level structure of our prompts creates an implicit open-response
problem. This is because the keywords suggested at the main
menu relate only to the high-level topicsS0; : : : ; S3, and not to
T0; : : : ; T5, though we allow for those classifications at this level.

3. OUR TOPIC-IDENTIFICATION SYSTEM

Topic identification is the task of correctly assigning topic labels
to utterances assumed to be about one of a fixed set of topics. Our
topic-identification system first subjects the spoken utterances to a
HMM-based automatic speech recognizer and then passes recog-
nized words to a classifier which models topics. Because we have
separated the recognition from the modelling of topics, we are able
to optimize the topic model on human transcriptions, which do not
have the anomalies of recognition.

The size of the total vocabulary of our directed-response data
is relatively small—roughly 450 words, of which approximately
100 were “function words” and articles, which could either be fil-
tered out or modelled with the rest of the words. We performed a
few preliminary experiments investigating alternate keyword sets,
by selecting keywords by hand and filtering function words. None
of these keyword sets enjoyed a material advantage over the other,
so that we did not pursue more sophisticated keyword-selection al-
gorithms. The experimental results we report below consider every
word seen in training as a keyword.

Our data set consists primarily of short utterances—often two
or three words—with little grammatical structure. Thus we turn to
multinomial models [2], which operate at the level of words and
with sparse data, rather than to higher-order models incorporating
grammatical fragments, as in [5].

3.1. The Multinomial Model for Keywords

We define anutteranceto be a sequence of wordsu = fuig, where
eachui 2 W = fw1; : : : ; wMg, a keyword set ofM words that
includes anon-keywordwhich substitutes for any word not inW .
LetU be the set of all utterances. We consider a set ofN classes, or
topics, C = fc1; : : : ; cng; each utterance has some probability of
being generated from each topic. We wish to model the probability

density functions of the utterances conditioned on the topics. We
use themultinomial modelfor this:

p(ujcj) =

MY

i=1

p(wijcj)
ni(u) (j = 1; : : : ; N) (1)

whereni(u) is the number of times wordwi appears inu. Given
these probabilities, along with an a priori probability distribution
P (cj) for the set of topicsC, we can construct a Bayes classifier
for utterances by maximizingp(cj ju) over allj = 1; : : : ; N .

To train the parametersp(wijcj) of the multinomial model, we
employ their maximum-likelihood estimate. Specifically, we are
given a finite set of labelled training utterancesX = f(uk; ck) 2
U�Cg, and for eachi = 1; : : :M andj = 1; : : : ; N , we compute
nij = the number of occurrences ofwi in all cj -labelled training
utterances. Let us denote the number of unique words which occur
in topic cj by Mj . Then the maximum-likelihood estimate for
p(wijcj), using a Bell-Witten backoff to account for wordswi for
whichnij = 0 [4], is

p̂(wijcj) =
nij +

Mj

MPM

i=1
nij +Mj

: (2)

Finally, we also use the maximum-likelihood estimate for the a pri-
ori probability of each topic, by using the frequency of the topic’s
occurrence among the samples inX.

4. EXPERIMENTAL RESULTS

We now describe the data on which we experimented and the re-
sults along the various dimensions of the call-routing problem.

4.1. Data Sets

We consider two data sets.Directed-response datawere collected
from directed-response prompts at both the main menu and the
sub-menu. We perform most of our experiments on this set. It con-
tains 647 main-menu responses and 384 sub-menu responses. Our
second set is from a scenario in which open-response prompts were
allowed at the main menu but the sub-menu prompt was directed-
response. Nevertheless, we refer to this set asopen-response data.
The open-response set contains 3655 main-menu responses and
855 sub-menu responses.

Our experiments on the directed-response data use a cross-
validation scheme to exercise the system on a large enough test
set to make the results significant. Here, we divide both the main-
menu and sub-menu responses, in random order, into fourths, and
we consider each fourth a test set in turn, using the remaining
three-fourths as training. In this way each of the 647 main-menu
and 384 sub-menu responses are used for testing in a fair manner.

Because the prompts at the two menus are different for both
the directed-response set and the open-response set, we consider
the classification of main-menu responses as a separate problem
from the classification of the sub-menu responses. In all experi-
ments we train separate models for these two sets of responses and
assign labels independently.

4.2. Results

Most of the results we report here are an adjustment of the per-
cent of the identifier’s labels that are correct. An adjustment is
necessary because a sub-menu utterance is always the second of a



Label accuracy
System All topics Leaf nodes

Two-stage 89.29 78.51
Pooled 89.70 81.26

Table 1: Classification of directed-response transcripts by two-
stage and pooled decisions trained from directed transcripts.

caller’s responses, and as such is conditioned on our classification
accuracy ofS1 at the main-menu prompt. As a result we compute
theoverall label accuracyof a set of labels as follows: ifCm and
Cs are the numbers of utterances labelled correctly at the main and
sub-menus, ifNm andNs are the total number of utterances from
the main and sub-menus, and if acc(S1) is the fraction ofS1 ut-
terances labelled correctly, then the label accuracy for this set of
labels is

LA =
Cm + acc(S1) � Cs

Nm +Ns

: (3)

We are reducing the number of correctly classified sub-menu re-
sponses by our failure at the main menu to pass callers to the
sub-menu. This is an approximation, which does not take into ac-
count any correlation between our success with a particular caller’s
main-menu response and our success with his or her sub-menu
response, and hence it is probably a low estimate of the true ac-
curacy. But this is only a mild approximation, since the classi-
fier performs well on theS1-labelled utterances and hence has
acc(S1) � 1; unless otherwise indicated it is above 0.95 in the
experiments to follow.

We give results for both theall-topic task, in which we score
the topic-identifier’s labels for all utterances, and theleaf-node
task, for which we score only the labels for utterances whose true
topics are among the non-operator leaf-node topics (T1; : : : ; T5).
The system always models and identifies all topics at each step;
we are simply looking at its label accuracy on both the entire test
set and a particular subset.

4.2.1. Two-Stage versus Pooled Decisions
In view of the two-layered structure of our problem, two methods
for main-menu label assignment are possible: atwo-stage deci-
sion, in which we first categorize a call among theSi, and, if the
label isS1, we make a second decision amongS1 and theTj ; or a
singlepooled decision, in which we decide once and for all among
S0; : : : ; S3 andT0; : : : ; T5. The idea of the two-stage system is to
obviate the irrelevant decision between eachTi andS0, S2, orS3
by filtering S0, S2, andS3 from consideration before looking at
theTis.

Table 1 compares the performance of these two methods on
human transcriptions of the directed responses. Both systems use
multinomial models for making classification decisions, but the
two-stage system uses two such models for main-menu utterances,
one for each decision. The two-stage system is worse for both
tasks, but it is only slightly behind the pooled-decision system for
all topic labels. Its larger failure is on the leaf-node labels, whose
classification was the motivation for the method. For both systems,
this more interesting task appears harder.

4.2.2. Open-Response versus Directed-Response Data
We wish to compare the performance of our system in a directed
setting to its success with open-response data. Because only the
main menu of the open data invites open responses, we abandon

Data set Percent of labels correct
Training Test All topics Leaf nodes

None Directed 75.89 19.50
Directed Directed 86.71 43.90

None Open 17.62 0.00
Open Open 63.33 63.21

Table 2: Classifications of transcripts of responses to the main
menu in the two data sets, with matched training and test data.

for the moment our label-accuracy measure and look simply at the
percent of main-menu utterances correctly classified.

Table 2 demonstrates how the system performs on test sets
of both open and directed data with matching training sets. We
obtained an open-response test set by drawing 1481 of the 3655
main-menu responses. Thus we have an open-response training
set of 2174 utterances, as compared to our directed-response train-
ing set of 647 main-menu responses (using cross-validation). The
entries in the table for which the training set is “none” indicate a
system that uses an “untrained” models on the test sets. When pre-
sented with a test utterance, this system simply adds to a count of
keywords taken from the prompts without considering the words
as they occur in training; the topic with the highest number of cor-
responding keywords, weighted by a topic prior estimated from
the training data, is chosen as the label. It is evident that these
directed-response utterances can be labelled with 75.89% accu-
racy simply by an accounting of prompted words. Since there are
no keywords in the open prompts to count, the untrained models
for this data simply pick the topic with the highest prior, and are
understandably poor.

As we expected, the discrepency between performance on the
all-topic task and on the leaf-node task is striking for the directed
data: the latter is the harder problem, both with untrained models
and trained models. But also striking is that proper training from
directed data improves performance from 19.5% to only 43.90%,
whereas proper training on the open data improves performance
from a zero correct to an impressive 63.21%. This large discrepency
may be due in part to the greater amount of training data in the
open-response set. But it also suggests that the open-response data
is better in general for training for the leaf-node task, which at the
main menu is an open-response problem in both data sets. Because
our directed-response problem contains this open-response com-
ponent, we next try supplementing our directed-response training
with open data.

4.2.3. Boosting Directed-Response Performance with Open-
Response Data

In order to fix the size of the training set and so only measure
its quality, we perform the following experiment: for each cross-
validation partition, and for both main-menu and sub-menu utter-
ance sets, we replace half of the directed-response data, randomly
chosen, with the same amount of open-response data, also ran-
domly chosen. Table 3 gives the label accuracy of this experi-
ment on transcriptions of the directed utterances. We see that for
the all-topic task very little is gained from the open data; but for
the harder, leaf-node problem, a substantial gain is obtained. If
we investigate more deeply the performance increase on the leaf-
node transcripts, we find that the open data boosts the percent of
correct labels from 43.90% to 65.85% for main-menu utterances,
but only from 92.8% to 94.12% for sub-menu utterances. So the
open-response data are, as we suspected, aiding the implicit open-



Label accuracy
Training set All topics Leaf nodes

100% directed 89.70 81.26
50% directed, 50% open 89.78 87.26

Table 3: Classification of directed-response test transcripts from
both directed and open training transcripts.
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Figure 2: Label accuracy of the classifier on directed test transcrip-
tions when trained on all directed and an increasing amount of the
open transcripts.

response problem in our two-level directed-response data: the leaf-
node classifications at the main menu.

Extrapolating from this substitutive experiment, we look at
how the addition of open-response data to the full directed-response
training set boosts performance on the directed-response test set.
Figure 2 shows the label accuracy on the directed data as a func-
tion of the percent of the open data used for training (in addition
to all the directed data used in training). We note that the all-
topic accuracy only slightly improves as we add open data, but we
can increase the leaf-node accuracy to be in line with the all-topic
accuracy. We see, furthermore, that at approximately 80%, the
open data ceases to afford any real improvement, indicating that
the model has reached its saturation of this training data for this
task.

4.2.4. Topic Identification with Automatic Speech Recogni-
tion

To this point we have reported results on human transcriptions
of prompt responses. A practical system, however, must classify
the errorful output of an automatic speech recognizer. We now
show that we can attain nearly identical performance as above with
speech-recognition output.

We trained the acoustic models of the HMM-based speech rec-
ognizer with data from the Switchboard corpus, and we trained
its language model from the open-response data set, so that we
might decode all directed-response data fairly. We compare using
the best hypotheses from the recognizer to using itsN -best list
of hypotheses, in the latter case allowing all words to have equal
weight. (N = 100 was determined optimal.) Label accuracy for
these different recognizer outputs on the directed-response data ap-

Type of data Label accuracy
Training Testing All topics Leaf nodes

BH BH 85.79 72.41
NB NB 88.12 78.38
HT HT 89.70 81.26
HT BH 85.56 69.30
HT NB 75.25 60.07

Table 4: Classification of directed-response data in various forms:
BH = Best hypotheses;NB = N -best hypotheses;HT = Human
transcripts. Training is on directed-response data only.

pears in Table 4. We see that if we train our system withN -best
lists and ask the system to classifyN -best test data, we can get to
within an absolute 3% of the label accuracy on human transcrip-
tions. Training and testing on the top hypothesis do not give us this
performance; we posit that theN -best lists allow for words which
are relevant but do not receive high enough scores by the speech
decoder to appear in the top hypothesis. In addition, theN -best
list, by repeating high-scoring words in each hypothesis, implic-
itly weights words better modelled by the speech recognizer.

We note that training on transcripts degrades the classifier’s
performance on both best-hypothesis andN -best output from its
performance on matched conditions. But theN -best test set, with
its expanded vocabulary, suffers more from the mismatch. In this
case, however, the performance of the classifier in identifyingS1
labels is, at 82.66%, significantly poorer than in other experiments;
this low acc(S1) depresses the label accuracy.

5. CONCLUSION

We have applied a multinomial model of word generation by classes
to a directed-response, two-level call-routing problem. We have
shown that for this application, it is more effective to account for
the implicit open-response problem by using open data in mod-
elling topics than to perform a two-level decision process after the
menu structure. In addition, we demonstrated thatN -best lists
from a speech recognizer are, to the topic model, about as good as
human transcriptions.
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