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ABSTRACT

This paper presents results of a study on perceptual invariants to
transformations on the speech signal. A set of psychoacoustic tests
were conducted as to put forward these invariants for the human
hearing system (HS). The starting point is the decomposition of
speech by an AM-FM analysis, rather than the use of more stan-
dard analysis methods. The main result of this work is the finding
that our HS is robust to - namely our perception is not altered by -
instantaneous frequency (IF) changes within a certain range, even
though these resulted in substantial waveform modifications. This
stimulated us to conduct further study on how standard analysis
methods would cope with perceptually invariant changes; results
show that, in fact, they are not robust to such changes. Finally,
some applications of IF changes are proposed.

1. INTRODUCTION

Most speech applications are based onlinear production
models and on short-term spectrum analysis of the signal,
usually extracting the envelope of the short-term spectrum.
These include linear prediction and cepstral analysis (see
[3] for a good review).

On the other hand, any wide-band signal can be fully
represented by the envelopes and phases of narrow-band
decomposition of the signal, given that the filtering pro-
cess covers ideally the full frequency range of the signal.
This is done in our HS at cochlear level where incoming
sounds are broken up into many narrow-band signals each
transmitted in separate narrow-band channels. This time-
varying instantaneous frequency and envelope (orAM-FM)
representation can describe nonlinear and time-varying phe-
nomena occurring at speech production level, in agreement
with experimental evidence in support ofnonlinearmodel
of speech production [5, 4]. As an example, theAM-FM rep-
resentation was successfully used by Maragos in the fields
of speech synthesis and coding [2].

A question that occurred to us is how precise must this
phase-envelope representation be for our HS, or in other
words to what extent do some modifications on this infor-
mation lead to changes in perception. To provide an answer,
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we conducted psychoacoustic tests evaluating ranges of per-
ceptual invariants.

The paper is divided as follows. In section 2 we de-
scribe the different stages of our experiments - including
processing and transformations on the signal. Results of
our psychoacoustic tests are presented in section 3. Finally,
in section 4, a discussion on the results is addressed and
conclusions are drawn.

2. METHODS

The complete processing chain is given at figure 1. First,
the input signals(t) is decomposed by a band-pass filter
bank. Each sub-signal is transformed into anAM-FM rep-
resentation byH and then modified by a functionT . All
are recombined to give a new version of the original signal,
s0(t). A perceptual invariant is found if our HS is unable to
differentiate the two signals. Let us now detail the different
stages.
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Figure 1: Overview of the processing method.
2.1. Processing

The first processing stage is an auditory-based filter bank,
composed of N=16 filters with centre frequencies (CF) in
the range 100-3400 Hz. The CF and bandwidth distributions
were set according to the BARK scale, given in [3]. FIR
filters of order 500 were used.

The second stage computes the Hilbert transform of each
sub-band signal, providing anAM-FM representation. The
Hilbert transform has been preferred to other possible de-
composition schemes [4] because of its easy implementa-
tion. At this level, the speech signal can be written as the



sum of narrow-band time-varying scaled cosines:
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an(t) � cos( �n(t) ) (1)

In the next step, we modified the envelope and phase of
each narrow-band signalsn by both scaling and temporal
shifts operations. The used schemes are presented in table
1; parameters�ta; �; �t� and� are constant if not otherwise
mentioned. Hence, at the output of the system, we have:

s0(t) =
X

n

a0

n(t) � cos( �
0

n(t) ) (2)

T1 T2 T3 T4
an(t+ �tan) �n � an �(t+ �t�n) �n � �n

Table 1: Transformation schemes.

2.2. Psychoacoustic tests

In order to determine if the transformations described above
were perceptible (or not) by our HS, we conducted psychoa-
coustic tests involvingten listeners. The testing conditions
were the following: listeners changed the parameter being
tested (�; �,...) until they heard a degradation between orig-
inal and modified speech, both of which could be played
individually or successively at all times. Listeners were
told that degradation meant either the presence of an au-
dible noise or a loss of intelligibility, which ever bothered
them first. To ensure better concentration of the listeners,
tests were divided into envelope and phase modifications
and each lasted 10-15 minutes at the most. Each test was
composed of 4 to 5 utterances, single words or combina-
tion of words. Samples were played through high quality
headphones in a low-noise room.

Although this testing method may be criticised, we be-
lieve it is adequate to show that some parameters can be
changed by large amount without provoking any degrada-
tion to the signal’s perception.

2.3. Implementation

Hilbert transform and parameters changes were implemented
usingMATLAB TM functions and C programming. The speech
segments were taken from the telephone qualityPHONE-
BOOK database, with sampling rate of 8000 Hz and coded
on 16 bits.

3. RESULTS

In this section, we will present the results of the four testing
schemes T1-T4, with an emphasis on the one that revealed
the most interesting results, T4. The ranges over which pa-
rameter changes were not perceptible by our listeners are

reported in table 2. For all figures presented below, the ut-
terance is the word“accumulation” spoken by an English
male.

Before anything, we verified that the processing chain
without any parameter changes lead to perceptually equiva-
lent sound signals, which listeners all agreed on.

T1 0 < �ta < 4ms T2 0 < � < 1! X

T3 0 < �t� < 2� T4 �0:35 < � < 0:6

Table 2: Psychoacoustic tests results.

3.1. Results of tests T1-T4

Envelope: tests T1 & T2 . Test T1 revealed that the en-
velope timing is essential within a certain range, which was
expected since timing plays an important role in HS pro-
cessing [1]. On the other hand, T2 was not interesting in
that amplification always eventually leads to saturation of
the listening media. That is why anX value is given in
table 2. The case where� was set randomly on all chan-
nels (within a limited range) revealed that the relative im-
portance of channels can not be strongly altered, in agree-
ment with many speech analysis work. We made an addi-
tional test in which the envelope is low-passed. Although
low-passing the envelope of a narrow-band signal at half
the corresponding filter’s bandwidth still ensures perfect re-
construction, our HS does not perceive degradation even in
the case where high-frequency channels envelopes are low-
passed at 300 Hz. Reduction of this value lead to progres-
sive degradation.

Phase: test T3 .Many experiments showed that phase
information contributed little to speech intelligibility [3].
Our findings are in perfect agreement with this as phases
shifts of 0 � 2� were perceptually inaudible in the case
where�t� was constant on all channels. Yet, it is worth
to mention that in the case where shifts are done randomly
on all channels, a degradation is perceived by listeners, but
seems dependent on the utterance being spoken, which makes
it very difficult to draw any conclusions.

Instantaneous frequency: test T4 . The T4 scheme
provided the most interesting results and stimulated us to
go beyond the primary scope of this work. First, let us point
out that scaling the phase by a factor is equivalent to scaling
the instantaneous frequency by the same factor. Our HS be-
ing more sensible in the low-frequency region, the� factor
was not set constant for all channels, but rather according
to: �n = � � CFn

CFN
whereCFn denotes centre frequency of

channeln.
Results of T4 reveal that the range of� over which no

perceptual degradation is heard is quite large, both in the
positive (stretching of the IF) and the negative (compression
of the IF). We believe this result is very important.



In order to see how relevant these findings are, we ver-
ified how spectral and temporal properties of speech are
modified by T4-like transformations.

3.2. Changes in temporal and spectral properties (T4).

In figure 2 we show the temporal waveforms of the original
signal and two modified versions with�=0.45 and�=-0.25.
Although their temporal aspects seem equal on the shown
temporal scale, figure 3 reveals that on a shorter time scale
the differences are clearly observable.
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Figure 2: Temporal waveforms of the word“accumulation”
spoken by and English male.
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Figure 3: Temporal zoom of the word“accumulation”.

Since many speech applications are based on short tem-
poral windows (typically 20 ms), we chose a stationary and
a non-stationary segment of the utterance considered here.
They are shown at figure 4, and will be used in all further
experiments. In figure 5 we show the power spectral densi-
ties of the non-statinary parts of the three signals. It appears
clearly that the spectra hold major differences on all the fre-
quency axis, even though the� factor affects more the high
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Figure 4: Stationary and non-stationary segments of the
word “accumulation”.

frequency region (see above). The spectra of the stationary
parts are not shown since no major differences are observed
between all three signals. This can be explained by the fact
that most energy is concentrated in low frequencies, where
the� parameter is small. The actual value of� of course in-
fluences the differences. These important observations sug-
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Figure 5: Power spectral densities of non-stationary sample.

gest that speech applications based on the signal’s spectra or
temporal properties may not be as robust to T4-type trans-
formations than is our HS.

3.3. Effect on analysis methods (T4)

In this section, we consider LPC and cepstral analysis meth-
ods and see how their representation of the signal is affected
by T4 changes. Coefficients were computed on 25 ms win-
dows. In the LPC case, we used a 12th order predictor (12
coefficients) and in the cepstral case we retained the first 12
coefficients, know to be the most significant [3]. Results
are presented in figure 6 for stationary and non-stationary
samples of the original and the two modified versions.

The general observation is that indeed there are differ-
ences in the coefficient values between the original and mod-
ified signals, for both stationary and non-stationary segments.
Looking more carefully, three points can be made: (1) the
LPCs differ significantly; (2) in both analysis schemes, the
non-stationary sample suffers more from these modifica-
tions than does the stationary one and (3) cepstral coeffi-
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Figure 6: LPC (top) and cepstral (bottom) coefficients for
stationary (left) and non-stationary (right) samples.

cients seem more robust, but differences are still observed.
Hence, we can conclude that the standard analysis tech-

niques can be questioned and may not be as invariant as our
HS to modifications that can happen in many real-life situ-
ations where temporal or spectral properties are altered.

4. DISCUSSION AND CONCLUSIONS

We have presented in this paper a study on to what extent
changes on envelope and instantaneous frequency of sig-
nals are not perceived by our HS. Our main conclusion is
that changes according to T4 scheme (in a given range) are
not perceptible but alter considerably temporal and spectral
properties of the signal, hence the standard analysis repre-
sentation, suggesting that the later may be questioned from
that point of view.
4.1. Discussion

Envelope. Tests on envelope (T1,T2) only lead to the con-
clusion that time relevance between sub-signals envelopes
is important, which is not new. On the other hand, we also
showed that high-CF channel’s envelope can be limited to
300Hz without degradation of speech quality. This finding
could perhaps be used advantageously in speech coding.

Phase. The results of test T3 are in agreement with
many studies on the perceptual unimportance of the phase
information for our HS. The novelty reported here is the
study of random phases changes on each channels but con-
clusions are hard to draw since perception is affected de-
pending on the utterance being spoken.

Instantaneous frequency.Test T4 lead to the most in-
teresting results. The range of the� scaling factor over
which no perceptual differences are noted is large. The HS
robustness to IF changes is not surprising if we consider
that speech is always constrained to modifications due to
our production mechanism, use of different microphones,
etc.

We then looked at how spectral and temporal standard
analysis techniques are invariant to the same modifications.
Results show lack of robustness of the methods. In order
to push these conclusions any further, we need to make ex-
periments in which we would inspect how some modifica-
tions, unperceived by our HS but present in many real-life
situations, may affect the whole chain of speech processing
in applications using LPC/cepstral analysis such as speech
recognition. For example we could see if the ability to sep-
arate classes is affected by such transformations.

4.2. Conclusions

possible applications. Simply by changing the� pa-
rameter, one can enlarge artificially a database. Artificial
generation of samples or enlargement of databases can in-
clude both samples that are perceptually undifferentiable
but have different temporal properties (to increase learn-
ing databases, etc.) or intentionally include samples with
audible degradation that simulate some real-life sources of
‘degradation’ such as stress, use of microphones, etc. As a
concrete example, we are presently testing this on speaker
recognition where learning process could be improved by
extra data.

Finally, as a conclusion, we feel perceptual invariants to
transformation on speech can provide new research direc-
tions in speech processing and some reported results could
be applied directly in some speech applications.
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