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Abstract
In this paper a recently presented adaptive algorithm
with reduced complexity is analysed for the white
Gaussian input case. The new analysis is extented for
the proposed case where updating includes more than
one component of the weight vector. The new algo-
rithm, which updates the weights correponding to the
element sizes of the data vector with the largest mag-
nitude, is compared with the case where the updated
weights are chosen randomly according to a uniform
density function. Analysis is performed for both cases
and the results are verified via computer simulations.

1 Introduction

Reduced complexity adaptive algorithms are becoming
more and more important. They are particularly needed in
high speed communication systems and in systems which
require adaptive filters with large orders (thousands of
taps). Several reduced-complexity algorithms have been
proposed [3], but these algorithms reduce the speed of con-
vergence in proportion to the reduction in the computa-
tional complexity. Recently, a new algorithm called the
MMAXNLMS algorithm [1] was introduced which reduces
the computational complexity but maintains the conver-
gence speed close to the original one when all the elements
in the weight vector are updated. The analysis for this
algorithm is extended here for the case where updating in-
cludes more than one weight vector. Also, the performance
of this algorithm is compared with the case where the el-
ements in the weight vector chosen for updating at each
time are determined according to a uniform random pro-
cess. This algorithm shall henceforth be called MRSNLMS
L Tn this algorithm the indices for the weights to be up-
dated at each iteration are chosen according to a uniform
random process. Analytical results are derived for this new
algorithm and they are verified by means of simulations.

2 Algorithm and

Analysis

Description

Recently a new reduced-complexity version of the normal-
ized LMS algorithm was presented in [1]. The reduction in
the computational cost of this algorithm was achieved by

IThe letters RS denote Random Selection.

updating only M weights out of the total number of the
weights, N, in the weight vector. The weights updated at
each iteration are chosen according to the magnitude of
the corresponding elements in the input data vector. The
mathematical description of this algorithm is [1]

wZ(n)ere(n)x(n —i+41),

if ¢ corresponds to

wi(n +1) = one of the first (1)
M maxima of |X(n)]
wi(n) , otherwise
where
e(n) = d(n) = XT (n)W(n) (2)

where d(n) is the desired signal and X (n) is the input data
vector of lenght NNV, all at time iteration n. The minimum
error, e*(n), is defined as

e*(n) = d(n) = XTW*(n) (3)
where W* is the optimal weight vector.

The weight deviation vector, V(n) = W(n) — W*, is
obtained using Eq.(1) as [1]

vi(n)ere(n)x(n —i+1),

. if 7 corresponds to
one of the first (4)
M maxima of [X(n)]

0 , otherwise

Vi(n +1) =

When N is large, which is usually the case, we can use the
approximation, X7 (n)X(n) ~ No2. Using a new vari-
able a = wf= and utilizing the well-known independance

@

assumptions [4], it is straightforward to show that

EIVE -+ D)) = (1 - 20Bla,] + a2 Blat,]) BV ()]

o Blafy |min + o*(N = D)oZ BV (n)]|Blzfy]  (5)

where &,,;, = Ele**(n)] and i corresponds to the indices
of the updated weights in the weight vector. The index i
takes the values i = 1, 2, ..., M in such away that ¢ = 1 cor-
responds to the weight vector component that is updated
using the sample in X(n) with the maximum magnitude



and 7 = 2 corresponds to the weight that is updated us-
ing the sample in X (n) with a magnitude that is next to
maximum, and so on. For the other weights that are not
updated we have

BIVE (n+ 1)) = EIVE (n)] (6)

where i = M + 1, ..., N correspond to the indices of the
weights that are not updated with no particular order. The
trace of the matrix B[V (n+1)VT(n+1)] which represents
the squared norm of the weight deviation vector is given
as

M N
Cin+1)=> EVE(m+D)+ > EVZEn+1)] (7)
i=1 j=M+1

Substituting Egs.(5),(6) in Eq.(7) we get

M
Cn+1)= M+Q2ZE[I§] + [o*(N = 1)o2—

=1

M
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Further simplification gives

2 M 2 2
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M M
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If we represent this equation in terms of T rather than =z,
where T has the same properties of x but with the variance
of T normalized to 1, then the last equation will take the
following equivalent form :

M
Cln+1) = <1 + oo > BE]+ (0% (N — )oi —20)

N < N
M M
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Defining a new variable S (k) where

k
S =" B, (11)
m=1

where T is a zero-mean unit variance Gaussian random
variable and the subscript (m) denotes order statistics such
that Z(;) is the maximum. Accordingly, and substituting
for «, Eq.(10) becomes

2 2 2
M 2u—p” p

2
1 Emin (2
+ s 5 (12)

The quantities, S](j) and S](é) can only be evaluated nu-
merically because they can not be evaluated analytically;
refer to Appendix A. Following a straightforward proce-
dure we can find a range for p over which the stability of
the algorithm is guaranteed. The stability region for p is
0<p< 2N(4) o) (13)

N+ (1+5,,/Sy)

and the value of p that gives maximum convergence speed
is

N

S R RS (14)
The excess MSE for this algorithm is given as
MSEegcess = 07C(c0)
- NpninSyy (15)
(2= pN — ST — psty)
where C'(00) is found from Eq.(10) to be equal to
C/(00) — pNEmin ST /02 (16)

(2= )N — w)S5; — us§y

The results for the new algorithm, MRSNLMS, are derived
from the above results by setting 51(\3) = M and S](é) =
3M. The range for u is given as

2N

O<pu< N1l (17)
The excess MSE is also given as
MSEcscess = 07C(c0)
E M (18)
(2—p)N —4p

The value of 1 which maximizes the convergence speed is
found to be

pr= (19)

The computational complexity of the MMAXNLMS al-
gorithm is a little bit higher than other reduced-complexity
algorithms, if the same number of weights is updated.
The increase in the number of computations is a result
of the sorting that is needed to determine the M elements
with the largest magnitude in the data vector. The addi-
tional computational count is determined by the sorting
algorithm. A fast on-line sorting algorithm is found in
[5]. This algorithm requires a maximum of 2log,(N) + 2
comparisons per time iterations. This relative increase in
computational complexity comes in such a way that the
MMAXNLMS algorithm can acheive faster rates of conver-
gence at lower computational loads compared with those
of algorithms introduced in [3].



3 Computer Simulations

In this section computer simultions are used to verify an-
alytical results. A filter of 140-taps is used throughout
the simultions. The input signal is a zero-mean unit vari-
ance white Gaussian random signal. A zero-mean white
Gaussian noise which has a variance of 0.1 is added to the
output signal to simulate measurement noise. The results
are the average of 100 independent experiments.

Fig.(1) shows C(n) for the MRSNLMS algorithm for
@ = 0.986 and M = 15,30,60, and 140. Fig.(2) shows
C'(n) for the MMAXNLMS algorithm for p = 0.986 and
M = 15,30,60, and 140. In these two figures the contin-
uous line represents experimental curves from the simula-
tions and the dashed line represents C'(n) from Eq.(12).
The values for S](\? and S](é) used in the generation of the
analytical curves for C'(n) are shown in tables 1 and 2,
respectively.

2 2 2 2
Si | S50 | sk | Sii
63.05 | 93.09 [ 123.8 | 140

Table.(1) : The values for §\2 for M = 15,30,60, and 140.

4 4 4 4
st | sk | sk | St
311.71 | 374.55 | 408.84 | 420
. Table.(2) : The values for S\3 for M = 15,30, 60, and 140.

Note how close the simulations are to the analytical re-
sults. Figs.(3) and (4) show the steady state level of C'(n)
for M = 60 for both algorithms. Notice that C'(o0) is
approximately the same for the two algorithms while the
MMAXNLMS algorithm achieves much faster convergence
than the MRSNLMS algorithm. In both cases, the analy-
sis and simulations are in close agreement.

The learning curves for the MRSNLMS algorithm and
the MMAXNLMS algorithm are shown in Fig.(5) and
Fig.(6), respectively. Notice the difference between the two
algorithms in the speed of convergence, while the steady-
state error is almost the same. Note, also, that the speed
of convergence is less aflected for the MMAXNLMS algo-
rithm than for the MRSNLMS algorithm when a reduction
in M is made.

4 Conclusions

The analysis of the MMAXNLMS algorithm has been ex-
tended to the case when updating includes more than one
weight vector. Simulation results were in excellent agree-
ment with the analysis. Analysis was, also, made for the
case where updating is based on a uniform random pro-
cess irrespective of the magnitude of the corresponding
elements in the weight vector. The analysis for this algo-
rithm, MRSNLMS, is a special case of the first algorithm,
MMAXNLMS. In both cases, the performance of the two
algorithms was very close to that predicted by analysis.
It was, also, shown that the number of weights updated
at each iteration, M, has negligeable effect on the steady

state error for both algorithms.

5 APPENDIX

Let y = |x|, the CDF of y is given as

Fy(y) = Fe(y) — Fo(=y),y > 0 (20)

The PDF for order statistics is [2]

o) = N1, 0) e )
(Fy ) (0= By ) (21)

where N is the number of the elements in the input data
vector, X(n). The expected value of x](g k) can be expressed
as

E[xz(”k)] = /700 2P fo o, (x)d (22)

oo

If p is assumed to be an even number then
E[x](gk)] = E[yfk)] (23)

Therefore, S](\]Z) can be represented by the following expres-
sion :

51(\5) = ZE[y&)]
M oo N —1)!
_ ;{N/Oozﬂ”fy(y)mX
(F, ) H = By ) 24

The last equation is only valid when p is an even number.
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Fig.(1) : The transient part of C(n) for MRSNLMS.
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Fig.(3) : The steady state part of C(n) for MRSNLMS.
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Fig.(5) : The learning curves of MRSNLMS for M = 15, 30, 60,

and 140.
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Fig.(2) : The transient part of C(n) for MMAXNLMS.
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Fig.(4) : The steady state part of C(n) for MMAXNLMS.
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Fig.(6) The learning curves of MMAXNLMS for M =

15,30, 60, and 140.



