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ABSTRACT

Texture boundaries or edges are useful information for
segmenting heterogeneous textures into several classes. Tex-
ture edge detection is different from the conventional edge
detection that is based on the pixel-wise changes of gray
level intensities, because textures are formed by patterned
placement of texture elements over some regions. We pro-
pose a prediction-based texture edge detection method that
includes encoding and prediction modules as its major com-
ponents. The encoding module projectsn-dimensional tex-
ture features onto a 1-dimensional feature map through SOFM
algorithm to obtain scalar features, and the prediction mod-
ule computes the predictive relationship of the scalar fea-
tures with respect to their neighbors sampled from 8 di-
rections. The variance of prediction errors is used as the
measure for detection of edges. In the experiments with the
micro-textures, our method has shown its effectiveness in
detecting the texture edges.

1. INTRODUCTION

Texture segmentation is a fundamental task in image pro-
cessing applications such as computer vision, medical imag-
ing and image retrieval from databases [4] [6]. In segment-
ing heterogeneous textures, even rough information on the
texture boundaries is useful and complementary to the ap-
proach based on the pixel-labeling according to the class-
specific features. Most of the previous edge detection meth-
ods, however, are based on the pixel-wise changes of gray
level intensities [1] [5], and thus are not appropriate for tex-
ture edge detection. Textures are formed by some patterned
placement of texture elements consisting of a group of pix-
els. Hence, the definition of homogeneity should be ex-
tended from uniformness of gray levels to the similarity of
patterns, and texture edge detection requires a mechanism
which can discrimate the patterns of texture elements, not
the dicontinuity of grey levels.

This paper presents a framework for detection of texture
patches by detecting and representing the boundary points
between different textures. The block diagram of the pro-
posed framework is illustrated in Fig. 1. For texture edge
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Figure 1: Texture Edge Detection System.

detection, several issues need to be resolved: 1) what tex-
ture features are used, 2) how to represent texture features
in a compact form , and 3) how to define the measure for
discontinuity of texture patterns. In our approach, the tex-
ture features are first extracted asn-dimensional vectors by
using Gabor filter banks, and then they are projected onto
an 1-dimensional feature mapF , and encoded as scalars by
replacing the Gabor features by the corresponding location
index onF . Then, the predictive relationship between an
encoded feature and its neighbors is computed along eight
directions by utilizing the function approximation property
of the multilayer perceptron. The variance of eight predic-
tion errors is used to represent the similarity of texture pat-
terns around the given pixel. After Gaussian smoothing is
applied over the variances to supress local fluctuation, the
final edge map is produced by the Canny’s edge-detection
algorithm [1].

2. BACKGROUNDS

2.1. Gabor Filter

Gabor filters are efficient for extracting texture features based
on localized spatial frequency information, which are useful
for texture classification and segmentation [3] [4]. Texture
features, in the Gabor filtering scheme, are obtained by con-
volving an image with the Gabor elementary functions. A
Gabor elementary function is a 2-D Gaussian modulated by



complex sinusoids defined by,

h(x; y) = g(x0; y0) exp[2�j(Ux+ V y)]; (1)

where(x0; y0) denote rotated coordinates in the spatial do-
main, and(U; V ) represents the filter location in frequency-
domain with a center frequencyF =

p
(U2 + V 2) and

orientation� = arctan(U=V ). g(x0; y0) is a 2-D Gaus-
sian function with the orientation angle� and coordinates
(x0; y0) = (xcos�+ysin�;�xsin�+ycos�). It is defined
by
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where�x and�y are scale factors which characterize the
spatial extent and bandwidth of the Gaussian filter. Usually,
�x and�y have a common value� = �=�, where� is the
center frequency and� is some constant. In this case, the
Gabor elementary function (3) takes a simple form
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By convolving an imageI(x; y) with Gabor elementary
functions, the outputs or coefficients of Gabor filters are ob-
tained

V (x; y) = jI(x; y) � h(x; y)j; (4)

wherej � j denotes the energy operator. In Gabor representa-
tion of texture features, a set of filters are chosen by varying
the center frequency and orientation so that they cover the
whole frequency domain. The texture features are defined
bymn-dimensional vectors defined in Eq. (11).

2.2. Kohonen’s Self-Organizing Feature Map

The Self-Organizing Feature Map (SOFM) algorithm pro-
posed by Kohonen [9] is a computational model of self-
organizing process based on competition between neurons.
The SOFM provides a nonlinear projection of high dimen-
sional input patterns onto a low dimensional output space,
called a feature map, in such a way that topologically-ordered
relations are preserved, i.e., similar input patterns are mapped
to the neighboringunits in the feature map. This implies that
the probability distribution of input patterns is represented
as locations in the feature map, and this propery is useful for
processing vector-valued features in the transformed scalar
space.

In the SOFM model, the network consists of one input
unit, and output units on a 1- or 2-dimensional lattice. Let
x = [x1; x2; : : : ; xn] be input vectors, and the weight of

output uniti be represented bywi = [wi1; wi2; : : : ; win].
When an inputx is presented to the network, the winning
unit is determined by

c(x) = arg min
i

jjx�wijj; i = 1; 2; : : : ; N; (5)

wherec(x) represents the index of the winning unit for the
inputx and jj � jj denotes the Euclidean norm. Depending
on the application, either the weight vectorwc or the index
c could be used. In our work,n-dimensional inputs, which
are Gabor features, are encoded as scalars with the indices.

Let�c(x)(t) denote the neighborhood kernel of the win-
ning unitc(x), which is a function of time, and it specifies
the spatial extent of the neighborhood over the lattice at the
time t. Usually�c(x)(t) is so chosen that it initially covers
a wide region and then shrinks to zero in the radius with the
time t. Once the winning unit and its neighbors are deter-
mined, the weights are updated as follows

wi(t + 1) =

(
�(t)[x�wi(t)] if i 2 �c(x)(t);

wi(t) otherwise
(6)

where�(t) is the learning rate at timet. By Eq. (6), the
weight vectorwi of the winning unitc(x) moves to the in-
put vectorx, and the topological ordering property emerges
from this process.

2.3. Function Approximation by MultilayerPerceptrons

Let I(x; y) be a random variable representing the attribute
of a pixel (x; y) in an image. In modeling the relationship
of I(x; y) with its neighbors,Nxy = fI(x� i; y � j) j 0 �
i; j � d g � fI(x; y)g, we assume that a functionf(�) un-
derlies the set of data pairsfI(x; y);Nxyg,

I(x; y) = f(I1; I2; : : : ; In) + �; (7)

whereIj 2 Nxy, and� is a random variable with zero-mean.
This relationship can be modeled by a regression function
which interpolates the regression surfaceE[I(x; y)jNxy]
from the observed data.

In the supervised learning approach, an approximation
f̂ (�) to f(�) is obtained by iteratively modifying the sys-
tem parameters in reponse to differences between the tar-
gets I(x; y) and the outputŝf (�). By the universal ap-
proximation theorem([8]), the multilayer perceptron net-
works can approximate any continuous multivariate func-
tion by superposition of sigmoidal basis functions�(v) =

1=(1 + exp(�v)) . The approximatêf (�) is represented by

f̂ (I1; I2; : : : ; In) =
MX
j=1

vj�

� nX
k=1

wjkIk � wj0

�
; (8)

wherewjk andvj are connection weights, andn andM are
dimension of the input and output space, respectively [7].



3. TEXTURE EDGE DETECTION

3.1. Predictive Relationship

In order to detect the discontinuty of texture patterns, one
needs to define a measure according to which textures are
discriminated. We used the prediction errors in defining
the measure of texture homogeneity. Given the attribute
M (x; y) of a pixel (x; y), if the neighbors from eight di-
rections, as illustrated in Fig. 2, can predictaccurately or
consistently the valueM (x; y), then it is very probable that
the textures around(x; y) belong to the same class. Here,
”consistency” means that the eight prediction errors have
similar values. When prediction errors are large but sim-
ilar values, the source of errors might be attributed to the
encoding scheme, not to the difference of texture patterns.
Thus the variance of prediction errors is a better indicator of
texture homogeneity than the mean of prediction errors.

Figure 2: Eight sets of neighbors.

3.2. The Proposed Method

Refering to Fig. 1, the texture edge detection algorithm is
summarized as follows.

Step1. The input texture imageI(x; y) is convolved
with each Gabor filterh��(x; y) from the filter bank
fh�i�j j i = 1; : : : ; n; j = 1; : : : ;mg to obtain the output

G��(x; y) = h��(x; y) � I(x; y); (9)

where * denotes 2-dimensional convolution.
Step2. The energy of each filter output is computed

V��(x; y) = j G��(x; y) j = j h��(x; y) � I(x; y) j ;
(10)

and thusmn-dimensional vectorsV(x; y) are obtained

V = [V�1�1 ; : : : ; V�1�m ; : : : ; V�n�1 ; : : : ; V�n�m ]; (11)

where�i and�j represent center frequency and filter orien-
tation, repectively.

Step3. A 1-dimensional feature mapF over the vec-
torsfV(x; y)g is generated by the Kohonen’s SOFM algo-
rithm. As illustrated in the previous section, the probability
distribution offV(x;y)g is preserved onF . For each pixel
(x; y), the scalar indexM (x; y) of the reference vector clos-
est tofV(x;y)g is assigned

M (x; y) = arg min
i

jjV(x; y)�wijj for all wi 2 F :

(12)

In this way we transformed the vector image to a scalar im-
age.

Step4. For eachM (x; y), its eight sets of neighbors are
defined byfN i

xyg
8
i=1, wherei is a direction index as shown

in Fig. 2. The neighbors from the directioni are arranged
as a vector[M i

1; : : : ;M
i
p], M i

j 2 N i
xy, and multilayer per-

ceptrons are trained to obtain the approximation functions
ff ig8i=1 with the relations,

M (x; y) = f i(M i
1; : : : ;M

i
p) + �i; for i = 1; : : : ; 8:

(13)

The predictive relationship betweenM (x; y) and its neigh-
borsN i

xy is estimated by the prediction error

ei(x; y) = M (x; y)� f i(M i
1; : : : ;M

i
p) (14)

The sample variance of the prediction errors

s2(x; y) =

P8
i=1(e

i(x; y) � �(x; y))2

8
; (15)

where�(x; y) is the mean offei(x; y)g8i=1, are assigned to
the pixel(x; y).

Step5. Over the sample variancess2(x; y), the Gaus-
sian smoothing is performed to remove local fluctuation ef-
fect, andvariance imageS(x; y) is obtained. This step is
similar to noise supression by lowpass filtering.

Step6. Following the Canny’s edge-detection method,
grdient operator is applied to the output of step 5, and by
thresholding the gradient magnitude defined by

F =

"�
@S(x; y)

@x

�2

+

�
@S(x; y)

@y

�2
#1=2

; (16)

the edge map is produced.

4. EXPERIEMENTS

The proposed approach was tested on micro-texture images
composed of heterogeneous textures such as fabric, water,
and sand textures [10]. As texture features, 24 coefficients
of Gabor filters are obtained with four scale factors (� =
2; 4; 6; and8), and six orientation angles (� = 0�, 30�, 60�,



90�, 120�, and150�). The 24-dimensional vectors are en-
coded with the corresponding indices of the feature map of
size 256, and then eight 9-15-1 multilayer perceptrons are
trained to predict the center value from the neighbors along
the eight directions as illustrated in Fig. 2. The detection
results, after Gaussian smoothing with� = 5:0, are shown
in Fig. 4 with various thresholding values.
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Figure 3: (a) Test image 1, and texture edge detection results
by thresholding at (b) 0.7, (c) 0.75, (c) 0.8. (e) Test image
2, and results by thresholding at (f) 0.6, (g) 0.7, (h) 0.75.


