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ABSTRACT

We consider the problem of estimating a parametric model
that describes radar backscattering from synthetic aperture
radar imagery. We adopt a scattering center model that in-
corporates both frequency and aspect dependence of scat-
tering. We develop an approximate maximum likelihood
algorithm for parameter estimation directly on regions of
the SAR image. The algorithm autonomously selects model
order and structure. Results are presented for both syn-
thetic and measured SAR imagery, and algorithm accuracy
is compared with the Cram´er-Rao bound.

1. INTRODUCTION

At high frequencies, the scattering response of an object is
well approximated as a sum of responses from individual
scattering centers [1]. A high-frequency scattering model
has been proposed in [2, 3] that incorporates both frequency
and aspect dependence of scattering centers. The model is
based on dominant responses of monostatic scattering solu-
tions from both Physical Optics and the Geometric Theory
of Diffraction. The model generalizes the point scattering
model [4, 5], and provides a richer description of scatter-
ing behavior. Each scattering center is modeled by a set of
parameters describing its location, shape, orientation (pose)
and amplitude. These parameters provide a concise, phys-
ically relevant description of the object and are thus good
candidates for use in target recognition, radar data compres-
sion, and scattering phenomenology studies.

The scattering center model is derived as a function of
frequencyf and aspect�. On the other hand, measurements
are typically available in the transform, or image, domain in
the form of small image chips extracted from larger SAR
images by earlier detection processing stages. To estimate
model parameters, these two domains must be bridged in
some way.
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Traditionally, estimation is carried out by transforming
image domain data into the frequency domain, and estimat-
ing parameters there [5, 6]; however, this requires estima-
tion of high order models must be applied to large data sets.
Alternatively, Gerryet. al.[3] transforms the model into the
image domain. Unfortunately, the transformation is analyt-
ically intractable unless simplifying assumptions are made
that limit the applicability of the approach.

We present a novel hybrid approach that provides good
statistical properties at low computational cost. Our ap-
proach is to estimate parameters in the image domain while
retaining a frequency domain scattering model. We exploit
the localized scattering and noise correlation behavior to de-
compose the problem into smaller estimation problems of
lower model order on subregions of the image. The algo-
rithm operates directly on SAR image chips and fit mod-
els only on regions of high backscattered energy. Process-
ing on image chips facilitates insertion into SAR ATR data
processing streams. In addition, by model fitting only on
regions of the image we realize robustness to the assumed
clutter model; for example, we reduce uncertainty or bias in
feature estimates that might be caused by large nearby clut-
ter scattering that is not well modeled as Gaussian noise.
We also obtain about two orders of magnitude of compu-
tational speedup over the algorithm in [3] under a less re-
strictive class of SAR measurement geometries and image
formation algorithms.

2. PARAMETER ESTIMATION PROBLEM

We adopt the scattering model developed in [2, 3]. The
backscattered energy of an object can be modeled as a sum
of contributions of individual scattering centers modeled as:
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This model describes the responses of both localized scat-
tering centers, such as trihedrals, and distributed scattering
centers such as dihedrals. Here,f is frequency,� is as-
pect angle,fc is the center frequency, andc is the prop-
agation velocity. Eachmi(f; �; �i) is the predicted scat-
tering center response described by the parameter vector
�i = [Ai; xi; yi; �i; Li; �i; i]

T ; Ai is a complex-valued
amplitude,xi andyi are the downrange and crossrange loca-
tions,�i 2 [�1; �1=2; 0; 1=2; 1] describes its frequency
dependence,Li and�i are the length and tilt angle of a dis-
tributed scattering center, andi models the (mild) aspect
dependence of a localized scattering center. For a localized
scattering center,Li = �i = 0, and for a distributed scatter-
ing centeri = 0.

SAR data measurements are taken on aMf �M� grid
of (f; �) values; we model the measurements as a sum of a
model term and Gaussian noise. Stacking the measurements
into anM � 1 vector ~d, withM = MfM�, we have

~d =

kX
i=1

~mi + ~n (3)

where~n � N (0; ~�) and each~mi is a vector ofmi(f; �; �i)
samples on the measurement grid. Image formation is ac-
complished by interpolating to a rectangular grid, multiply-
ing with a 2D window function, zero padding, and trans-
forming with a 2D inverse discrete Fourier transform. We
arrive at a grid ofNx � Ny samples in the image domain,
whereN = NxNy > M because of the zero padding. The
image formation process can be represented by a linear op-
eratorB. Stacking the image-domain measurements into an
N � 1 vectord, we have

d = B ~d =

kX
i=1

mi + n (4)

wheren � N (0;�) and� = B ~�BH .

3. ML ESTIMATION AND APPROXIMATION

From the model and measurement vector above, we can
state the estimation problem as follows: givend 2 R(B),
find the maximum likelihood estimate of�. From equa-
tion (4), we see thatd � N (m(�);�). Sinced 2 R(B),
the� which minimizes the log likelihood function is found
as:

�̂ML = argmin
�

J(�) (5)

J(�) = [d�m(�)H ]�y[d�m(�)] (6)

where(�)y denotes Moore-Penrose pseudoinverse. Equa-
tion (5) is a nonlinear least squares minimization problem;
becaused and� are of high dimension, direct minimization
is computationally intensive, and we seek computationally
simpler suboptimal solutions.

We make use of the fact that scattering center responses
are localized in the image domain. Therefore, for param-
eter vectors near the ML estimate the above minimization
can be approximately decomposed into smaller estimation
problems. We partition the image intor regionsRi of high
energy and a remainder regionR0. Defining�i as the pro-
jection onto regionRi, we have

J(�) =
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y�i[d�m(�)]

�

rX
i=1

[d�m(�i)]H�i�
y�i[d�m(�i)] + C (7)
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]T is a vector containing the scat-
tering parameters for regionRi andC is a constant indepen-
dent of�. Since the number of pixels inRi is (much) less
thanN and the�i form a disjoint partition of�, the individ-
ual minimization problems in equation (7) are decoupled
and of (much) smaller size.

An additional advantage of the approximate ML algo-
rithm is its robustness to the assumed noise model. The as-
sumption of correlated Gaussian noise across the entire im-
age is not very accurate for scenes where clutter is present
in the form of trees, power lines, etc. However, this assump-
tion is much better over small image regions that primarily
contain target scattering centers.

4. ALGORITHM DESCRIPTION

The parameter estimation algorithm uses equation (7) with
an estimate-and-subtract approach similar to the CLEAN al-
gorithm [7]. We recursively locate the highest energy re-
gion, fit a small number of scattering centers to that region,
and subtract the reconstructed model from the original data.
This models the region of interest and also removes side-
lobes from the remainder of the image. If sidelobe leakage
into other regions is not a problem, the regions can be pro-
cessed in parallel rather than recursively. The algorithm ter-
minates when a specified number of scattering centers have
been processed, when a specified fraction of energy in the
original image has been modeled, or when the peak in the
residual data is a specified level below the original peak.

We segment the high energy regions using a watershed-
based algorithm [8]. We classify the image region as a dis-
tributed scattering center, a single localized scattering cen-
ter, or multiple localized scattering centers using moments
of inertia of the image region about a vertical and a horizon-
tal axis through the center of mass of the region.



We compute initial estimates for the parameter values
from the measured data in the image region or assign ini-
tial values based on knowledge of the range of values that
are reasonable to represent the scattering mechanisms. We
choosex andy as the center of mass of the region. We es-
timateL by computing an DFT of a one dimensional slice
of the image data through the center of mass of the selected
image region, removing the window function, and fitting a
quadratic function to the peak of the main lobe of the sinc;
L is found from the quadratic coefficients. The� parameter
is drawn from a small set of discrete values and an exhaus-
tive search is possible. We set = � = 0, and initializeA
by a linear least squares fit over the region. Once initial pa-
rameters are set, we use a standard nonlinear minimization
routine to descend to a local minimum.

We have implemented a fast version of the estimation
algorithm which employs a slight variation of the initializa-
tion step and skips the iterative descent [9]. This version
requires two orders of magnitude less computation, but pro-
duces less accurate results.

5. EXPERIMENTAL RESULTS

We present feature extraction experimental results on three
data sets: 1) synthesized model data, 2) XpatchF synthe-
sized data of a Sandia National Laboratory test target (SL-
ICY), and 3) measurements of a T72 tank.

To test the relative statistical efficiency of the approx-
imate maximum likelihood method, we synthesized noisy
images of localized and distributed scattering centers at sev-
eral SAR image resolutions using the parametric model. We
performed 50 such trials for each combination of scatter-
ing center type, resolution, and signal to noise ratio. The
AML parameter estimator essentially achieves the Cram´er-
Rao bound (CRB) in every case [9].

We next applied our algorithms to synthetic images of
the SLICY geometric test object that were generated using
the XPatchF electromagnetic prediction package. The fre-
quency and aspect responses were generated by XPatchF,
and different ranges of frequencies and aspects were used
to form images with different resolutions. We added noise
to the synthetic images and estimated the scattering center
parameters with both the fast and the approximate ML vari-
ations of the algorithm. We compared simulation variances
with Cramér-Rao bounds for a number of scattering centers
on the object for several SAR image resolutions and SNRs.
We present two examples for the trihedral scatterer. The
observed variances and the CRB for thex, y, and� param-
eters of the scattering center for 6” resolution imagery and
for several SNR values is shown in Figure 1. Here, SNR is
defined as the ratio of the peak pixel in the noiseless data to
the standard deviation of the noise. The observed variances
of the parameter estimates and the CRB are shown in Fig-
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Figure 1: Observed parameter variances Cram´er-Rao
Bounds for XpatchF SLICY trihedral at 6” Resolution.

ure 2 for 3”, 6”, and 12” SAR resolutions and at 30 dB SNR.
Variances forx andy parameters are in inches2 for these fig-
ures. In both cases we see good agreement with the CRB for
the AML algorithm, and somewhat higher variances for the
fast estimation algorithm; however, even in the fast algo-
rithm the standard deviations of scattering center locations
are less than 0.1 inch for all noise levels and resolutions.

We have also applied our algorithms to measured SAR
images [10]. Figure 3 shows a measured SAR image of a T-
72 tank and its reconstruction from parameter estimates. We
estimated the parameters of 33 scattering centers in this im-
age. The algorithm autonomously selects model order and
modeling regions. The algorithm models 71% of the over-
all image energy, and 85% of the energy in a rectangular
region containing the target. In addition, the tank barrel seg-
ment is modeled as a single scattering center whose length
is modeled within 10 cm of the 1.37 m length. In compari-
son, peak-based scattering center extraction methods model
this segment as multiple peaks spread along the barrel. This
suggests that the proposed model can be used to extract geo-
metric scattering information such as length, and that it can
be accurately estimated on measured data.

6. CONCLUSIONS

We have developed a computationally efficient algorithm
for estimating scattering parameters from SAR image chips.
The algorithm recursively estimates small clusters of scat-
tering centers from regions of high energy in the SAR im-
age, providing both computational efficiency and robustness
to the assumed noise model. The algorithm autonomously
selects model order and structure. Simulations on synthetic
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Figure 2: Observed parameter variances and Cram´er-Rao
Bounds for Xpatch SLICY trihedral at 30 dB SNR and 3”,
6”, and 12” resolutions.

and measured imagery suggest that the algorithm is nearly
statistically efficient, and shows promise for extracting phys-
ically meaningful scattering features.
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Figure 3: Measured SAR Image of T-72 Tank (top) and re-
construction from estimated parameters (bottom). Images
are in dB magnitude
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