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ABSTRACT

A novel enhancement system is developed that exploits the prop-
erties of stationary regions localized in both time and frequency.
This system selects stationary time-frequency (TF) regions and
adaptively enhances each region according to its local signal-to-
noise ratio (LSNR) while utilizing both the acoustical knowledge
of speech and the masking properties of the human auditory sys-
tem. Each region is enhanced for maximum noise reduction while
minimizing distortion. This paper evaluates the proposed system
through informal listening tests and some objective measures.

1. INTRODUCTION

In speech enhancement, the main objective is to maximally reduce
noise while minimizing speech distortion. To attain such objective,
a balanced tradeoff between noise reduction and speech distortion
must be achieved, as noise reduction invariably introduces speech
distortion. Many enhancement methods in the past sought this
tradeoff over the entire spectrum of short segments of fixed length.
However, by exploiting both time- and frequency-localized behav-
ior of speech and also utilizing both the acoustical knowledge of
speech [1, 2, 3, 4] and the masking properties of human auditory
system, a tradeoff that better achieves its objective is possible.

In this paper, a system which exploits the properties of station-
ary regions localized in TF is described. As in [5], the proposed
system identifies and selects stationary TF regions using M-band
decomposition with adaptive analysis windowing. For each se-
lected region, the system makes various parameter adjustments for
maximal noise reduction with minimal distortion. Instead of se-
quentially processing the channels as in [5] without utilizing any
interband acoustical knowledge, the proposed system enhances the
M channels in parallel using interband acoustical information.

The two essential operations involved in the tradeoff men-
tioned above are spectrum estimation and noise reduction. When
estimating the speech spectrum, an all-pole model is often used.
Given that the resolution of an all-pole spectrum is determined by
the order of the model [6], the order can be adjusted to achieve
an appropriate spectral resolution to suite the local condition of
a region. Many enhancement methods have relied on fixed order
model regardless of both the signal characteristics and the SNR of
each speech segment when estimating the speech spectrum; how-
ever, by varying the model order according to the changing char-
acteristics of speech a more suitable estimate can be made. When
reducing noise, the Wiener filter has often been used although with
limited success. By modifying the Wiener filter and adjusting
its parameters to reflect both the varying behavior of speech and
LSNR, a more balanced tradeoff is achieved.

As described in [5], the system makes no effort to decimate
and then interpolate the subbands to reduce computation as in many
of the systems described in [7] since the number of subbands is
limited to only a few- a band per kilo-Hertz for maximum performance-
the computational saving by decimation is only marginal (factor of
number of subbands) and the difficulty of eliminating or compen-
sating for aliasing can be overbearing.

The paper is organized as follows: Section 2 describes the pro-
posed overall enhancement system. Sections 3 describes how in-
terband acoustical information is used to detect unvoiced TF re-
gions. Section 4 presents some examples using the proposed sys-
tem. Finally, Section 5 concludes the paper.

2. ENHANCEMENT SYSTEM

This system enhances speech in three steps. The first is identifying
and selecting stationary TF regions in degraded speech by M-band
decomposition with adaptive analysis windowing. The second is
estimating the spectrum and then adaptively enhancing each se-
lected region according to its local signal-to-noise ratio (LSNR)
while utilizing the acoustical knowledge of speech. A modified
Wiener filter based on selective linear prediction (SLP) model is
used to enhance each region. By adjusting both the order of the
model and the parameters of the filter to suit the local character-
istics, each region is enhanced for maximum noise reduction and
minimum distortion. The third step involves synthesizing the M
enhanced channels and ultimately the enhanced signal.

2.1. Overview

The overall system is shown in Figure 1. As shown, degraded
speechy[n] is initially decomposed into M channelsfy(k)[n]gMk=1
by an M-band filter bankfH(k)(!)gMk=1 such thaty(k)[n] =

P
i
h(k)[n�

i]y[i] whereh(k)[n] is the impulse response of thekth channel
filter with frequency responseH(k)(!). The passband and non-
passband ofH(k)(!) are denoted respectively byR(k)

H andR(k)
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k will refer to thekth channel. For example,y(1)[n] refers to the
dc channel, andy(k�1)[n] andy(k)[n] are adjoining channels for
k = 2; : : : ;M . The decomposition satisfies the following three
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Figure 1: Overall enhancement system.
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Once the decomposition satisfying the above conditions is per-
formed, stationary regions in each channel are identified and se-
lected using an adaptive window whose length varies according to
the changing spectral characteristics of the channel2. The adaptive
window ~w(k)

m [n] corresponding to themth time interval andkth

channel is designed such that the following condition is satisfied:

X
m

~w(k)
m [n] = 1 ; 8n : (2)

The normalized cross-correlation between the smoothed spectra in
two different time intervals is used as a similarity measure; thus,
signal within an analysis interval will have steady similarity mea-
sure [8].

Following the selection, each region is enhanced using the
modified Wiener filter based on an all-pole spectrum. To estimate
the all-pole spectrum in the frequency range of interest – either
in passband or non-passband regions– selective linear prediction
(SLP) is used. The spectral resolution is adjusted by varying the
model order to suite both the LSNR and the acoustical behavior
of the region. In addition to varying the order of the model, the
parameters of the modified Wiener filter are also adjusted to suite
local conditions. In order to determine the local conditions, the
kth reference signalq(k)[n] = y(1)[n] is used (discussed in Sec-
tion 3). The enhancement is performed on a frame-by-frame basis

1
no: constant

2A stationary signal is used here to roughly mean a signal whose fre-
quency content does not vary with time.

where a frame constitutes a windowed segment of varying length.
Themth frame of thekth channel denoted byy(k)m [n] is given by

y
(k)
m [n] = y

(k)[n] � ~w(k)
m [n] : (3)

The modified Wiener filter of thekth channel andmth time
interval is denoted by�(k)w (m;!) and is given by

�
(k)
w (m;!) =

P
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whereP (k)
s (m;!) andP (k)

z (m;!) are respectively the estimated
SLP spectrum of speech and the noise spectrum. To estimateP

(k)
s (m;!),

separate sets of SLP coefficients are used for regionsR
(k)
H and

R
(k)
H�. As mentioned above, the order and the number of iteration

are dependent on both the acoustical nature and the LSNR. The pa-
rameterc(k)(m) is also varied depending on the local conditions.

The overlap-add method is used for the synthesis of each chan-
nel so that̂s(k)[n] (see Figure 1) is the enhanced signal ofy(k)[n]

for k = 1; : : : ;M , and once each channel is synthesized,fŝ(k)[n]gMm=1

are summed for the synthesis of the enhanced signalŝ[n].

3. THE USE OF ACOUSTICAL INFORMATION OF
SPEECH

In order to improve the intelligibility of the overall speech, the
enhancement of both voiced and unvoiced sounds have to be per-
formed equally well. Unfortunately, the energy of unvoiced sound
is much lower than that of voiced, and often in noisy speech un-
voiced sound is inaudible while voiced sounds are perfectly au-
dible. By incorporating some acoustical knowledge of speech,
the proposed system can improve the enhancement of unvoiced
sounds.

Considered to be mid-to-high frequency noise, unvoiced sound
is characterized by the spectral location of the energy weight. The
proposed enhancement system determines whether a signal local-
ized in TF region is unvoiced or not by comparing its power to that



Table 1: Summary of modeling the region ofith channel andmth

time interval of length N.v:voiced region anduv:unvoiced region

LSNR(i)(m) order c(i)(m) Num. iter.

> 15dB N/3 0.5 3

0dB-15dB
v: N/3
uv: 2

v: 0.75
uv: 0.5

2

< 0dB 0
v:1.5
else 3.0

3

corresponding to the baseband: thekth channel ofmth time in-
tervaly(k)m [n] wherek > 1 is consideredunvoicedwhen its power
P (k;k)(m) satifies the following condition3:

P
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whereS(k)zz (!) andW (k)
m (!) respectively representkth channel

noise spectrum and Fourier transform of~w
(k)
m [n]. When noise ex-

hibits similar acoustical behavior as unvoiced, the enhancement of
unvoiced sound becomes a matter of identifying and preserving
the spectral location of the energy weight by reducing less noise
around the spectral location of the energy weight relative to other
spectral regions. In order to determine if a region is unvoiced or
not,q(k)[n] = y(1)[n]; k = 1; : : : ;M is required in order to eval-
uate (4). see Figure 1).

4. EXAMPLE

To illustrate the performance of the proposed system two clean
sentences - “That shirt seems too long” and “He has the bluest
eyes”- respectively spoken by a female speaker and a male speaker,
sampled at 10kHz are degraded at an SNR of 10dB by additive
white Gaussian noise and are then enhanced using parameters shown
in Table 1.

In Figures 2 and 4, each shows spectrograms of clean, noisy
and enhanced. Figures 3 and 5 show plots of segmental SNR of
both enhanced and noisy. The figure shows that noise reduction not
only in silence regions but also in regions where various acoustical
forms of speech are present- of course speech distortion is kept to
a minimum for regions where speech is present. The segmental
SNR is defined as follows:

seg. SNR of̂s[n] at m =

10 log10

� PNs

n=0
s2[n�m]PNs

n=0
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Figure 2: Spectrograms of (a) clean (“That shirt seems too long”)
(b) noisy and (c) enhanced.

5. CONCLUSIONS

The problem of reducing noise in speech which has been degraded
with additive noise has been investigated. The purpose of this
study was to develop a system that would maximize noise reduc-
tion while minimizing speech distortion. To attain this goal, a
balanced tradeoff between noise reduction and speech distortion
must be target-ted, as noise reduction often leads to speech distor-
tion. Traditional enhancement methods try to achieve this balance
over the entire spectrum of a fixed-length windowed speech seg-
ment; however, by exploiting the local characteristics of stationary
TF regions and utilizing both interband acoustical information of
speech and the masking properties of the human auditory system,
a tradeoff that better achieves its objective can be made.
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Figure 4: Spectrograms of (a) clean (“He has the bluest eyes”)(b)
noisy and (c) enhanced.
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Figure 5: Segmental SNRs of enhanced and noisy (shown in Fig-
ure 4) versus sample number using Equation 5 w ithNs = 150.


