
IMPROVED SPELLING RECOGNITION USING A TREE-BASED FAST LEXICAL MATCH

Carl D. Mitchell and Anand R. Setlur

Lucent Technologies Bell Laboratories
2000 N. Naperville Rd., Naperville, IL 60566, USA

fcarlmitchell, asetlurg@lucent.com

ABSTRACT

This paper addresses the problem of selecting a name from a
very large list using spelling recognition. In order to greatly
reduce the computational resources required, we propose a
tree-based lexical fast match scheme to select a short list of
candidate names. Our system consists of a free letter rec-
ognizer, a fast matcher, and a rescoring stage. The letter
recognizer uses n-grams to generate an n-best list of letter
hypotheses. The fast matcher is a tree that is based on con-
fusion classes, where a confusion class is a group of acous-
tically similar letters such as the e-set. The fast matcher
reduces over 100,000 unique last names to tens or hundreds
of candidates. Then the rescoring stage picks the best name
using either letter alignment or a constrained grammar. The
fast matcher retained the correct name 99.6% of the time
and the system retrieved the correct name 97.6% of the time.

1. INTRODUCTION

Accurate spelling recognition of telephone bandlimited
speech represents a challenging task for machines (and for
people) due the existence of confusable letter groups, e.g.,
the e-setf b, c, d, e, g, p, t, v, zg. Good performance re-
quires a tightly constrained grammar such as a list of all pos-
sible spellings. Unfortunately, searching a fully constrained
grammar is often extremely computationally and memory
intensive. This paper presents a two-pass method that
greatly reduces the resources required for accurate spelling
recognition. Although our approach is applicable to many
types of tightly constrained grammars, we will focus on the
task of recognizing a spelled name from a large list of can-
didate names, as in automated directory assistance.

2. RELATED WORK

Previous work on acoustic modeling for spelled word
recognition has been reported by several authors and is sum-
marized in [1]. Typical letter recognition accuracies vary
between 85% and 90% for telephone bandlimited speech
and a speaker independent system. In [2], letter recognition
accuracy is improved from 88.2% to 98.1% by confining
the search space of the recognizer to a pre-determined set of

names and imposing probabilities on the search tree based
on a language model. With this method, the memory and
cpu requirements increase as the number of candidates in-
crease. In our method, the search space is less dependent on
the vocabulary size because the first stage is a self-looping
grammar where any letter can be followed by any letter. In
[3], a self-looping grammar is used in conjunction with a
lexical matcher. This matcher, first proposed in [4], uses a
distance based on the number of insertions, deletions, and
substitutions to retrieve the N closest lexical neighbors for
further processing. The drawback with this method is that
even though the entire tree is not searched to find the top
N lexical neighbors, the lexical matching can still be quite
expensive for a large name list. The fast lexical matcher
that we propose in this paper has the list of lexical neigh-
bors stored ahead of time and uses a tree search to quickly
generate a short list of candidates.

3. DATABASES

The acoustic training set consists of a set of 7200 spelled
names from the MACROPHONE collection and another set
of 1500 spelled New Jersey town names. This training
set yielded 64,000 training tokens from which the acoustic
models were estimated.

The full list of names consists of all the last names in
New York City plus New Jersey town names. The lexicon
is comprised of the 133,000 unique names in the list of over
six million NY/NJ names. The n-grams, which were trained
using the list of unique names, requires 0.1 Meg, 0.4 Meg,
and 1.9 Meg of recognizer memory for the cases when n is
3, 4, and 5, respectively.

Since we do not have acoustic data for New York last
names, our test set consisted of 500 New Jersey town names
comprising a total of 5,100 spoken letters. The OGI spelled
name corpus distributed by the Linguistics Data Consortium
was not available to us at the time of publication. Since sev-
eral results on the OGI database have been published (e.g.,
[2]), we will present our results on the OGI database at the
conference.

N-grams

N=3,4,5

R

L

A

B

F

r a m
A

r i m s k y
r i n s k y

r a m s e y
r a m s e t t y
r a m s b y

r a n
r a m s e y

r a m s e y

r a t

r i n s k y

R A M F B I

R A M F A I
R I M F B I

r a m s a y

r a m s a ya

b

z

y

r i n s e y
r i n s d y

r i n s t y
r a n s t y
r i n s b y
r a n s k y
r i n s k y

r a n s d y

 Short List

r
a

n
 s

 e
 y

Speech
Input

r a n s e y

R I M F A I

r i n s k y
r i m s k y
r a m s e y
r a m s e t t y
r a m s b y
r a m s a y

Letter2Class

N-best output

M
F

T

F

B

B

I

I

I

A

I

AM

Q

I

M

I

r a m s a y,

 AlignmentLetter Recognizer
Lexical Fast Matcher

r a n s b y

Letter

Constrained Grammar

Figure 1: System Architecture.

4. SYSTEM OVERVIEW

Figure 1 depicts our system. The spoken letters pro-
cessed by a free letter recognizer generate a list of n-best
hypotheses. Each hypothesis is converted to a sequence of
class letters that are used to search a tree. Starting at the root
of the tree, the class sequence specifies a path to a leaf that
contains NY/NJ names similar to the input letter hypothe-
sis. The concatenation of names across all n-best leaves pro-
vides a short list of candidates that can be searched in more
detail in the rescoring stage using either letter alignment or
an acoustic search using a tightly constrained grammar.

5. LETTER RECOGNIZER

The acoustic models are continuous density, context in-
dependent, left-to-right, Hidden Markov Models (HMMs)
with each letter of the alphabet being modeled as a sepa-
rate unit. Vowels are modeled with 3 states and consonants
are modeled with 6 states, where each state is modeled as
a mixture of 16 Gaussians. An additional single state 32
Gaussian mixture silence model rounds out the 27 models.
All models were discriminatively trained.

The topology of the letter recognizer allows any com-
bination of letters, as shown at the far left of Figure 1. Al-
though the topology does not include lexical constraints, an
n-gram language model trained using the NY/NJ lexicon
provides much of the same information. This solution re-
quires far less memory and processing time than a fully con-
strained search. After experimenting with language weights
between 5 and 30, a value of 15 was chosen for all of the ex-
periments reported in this paper. Without n-grams, 88.1%
of the letters spoken were recognized correctly, word accu-

racy (%correct - %insertions) was found to be 87.2%, and
the string accuracy was only 39.4%. Using 5-grams that
were built for the NY/NJ lexicon, the performance increased
to 96.9%, 96.0%, and 75.4%, respectively. This illustrates
how well the lexical constraints are captured by the n-gram
language model.

6. LEXICAL FAST MATCH

We grouped the 26 letters of the English alphabet into
8 classes based on acoustic similarity, as shown in Table 1.
A capital letter denotes a class name composed of similar
sounding letters. For example, the set identified by B con-
sists of the e-set letters:b, c, d, e, g, p, t, v,andz. (Note that
lettersl ando could be assigned separate classes since they
are not similar acoustically; by merging these letters, each
class label can be represented with 3 bits.)

Class Name Letters

A a, h, j, k (a-set)
B b, c, d, e, g, p, t, v, z (e-set)
F f, s, x
I i, y
M m, n
Q q, u, w
L l, o
R r

Table 1: Letter Classes

Each name of the NY/NJ lexicon is converted to a key
that will be stored in a tree, where a key is formed by re-
placing each letter with its class letter. A leaf in the tree

contains all names that map to the leaf’s key. Since most
mistakes made by the letter recognizer are within-class sub-
stitutions, the key accuracy will be higher than the letter
accuracy. The most likely string of letters as provided by
the letter recognizer is converted to a key that can then be
found by traversing the tree. All of the names that reside at
that leaf are added to the short list.

Since it is unrealistic that the top hypothesis from the
letter recognizer is always going to yield the correct key, the
n-best hypotheses from the letter recognizer are converted
into n keys. Each unique key contributes one or more names
to the short list of candidate names.

7. RESCORING STAGE

As shown at the far right of Figure 1, we consider two
methods to select the best name from the short list of candi-
dates provided by the lexical fast matcher.

7.1. Rescoring Using Letter Alignment

Once the short list of candidates is found by the fast
matcher, each is aligned with the top hypothesis from the
free letter recognizer. Using an edit score, dynamic pro-
gramming minimizes the total number of insertions, dele-
tions, and substitutions. The retrieved name is the candidate
with the minimum edit score.

7.2. Rescoring Using Constrained Grammar

A second way to choose among the candidates provided
by the fast matcher is to re-recognize the acoustic signal
with a constrained grammar that corresponds exactly to the
short list of candidates. The same thing could be done for
the large list of names, but we found that this requires too
much processing time for a task like directory assistance.
This method works well, however, for the short list because
the average number of candidates is usually well below one
hundred.

8. RESULTS

In Tables 2, 3, and 4, the label “Fast” gives the perfor-
mance of the lexical fast matcher, which is the percent of the
time that the correct candidate is retained. This is not a mea-
sure of the system performance since the short list of candi-
dates has not yet been resolved. The retrieval accuracies for
the letter alignment rescoring method and the constrained
grammar rescoring method are labeled with “Align” and
“Rescore”, respectively. Each of these scores must be less
than or equal to “Fast”, since an error by the fast matcher is
propagated to the rescoring stage. The average number of
candidates generated by the fast matcher is labeled “Avg”
and represents an estimate for the size of the short list.

8.1. Baseline
The baseline system is summarized in the system

overview described in Section 4. As can be seen from Table
2, increasing the order of the n-gram language model sig-
nificantly improves performance while having little effect
on the number of candidates that need to be rescored. Note
that “Rescore” consistently performs better than “Align”.

Ngram Nbest Fast Avg Align Rescore

3 10 93.0 2.1 88.4 89.4

3 20 94.6 2.6 90.2 91.6

4 10 94.2 2.0 90.4 91.2

4 20 95.6 2.6 91.8 93.0

5 10 96.0 2.0 93.2 93.8

5 20 97.0 2.6 93.2 94.2

Table 2: Baseline System Performance

There is a tradeoff between the accuracy of the fast
matcher and the number of candidates passed on to the
rescoring stage. As expected, both the average number of
candidates and the overall performance increase with more
n-best hypotheses.

8.2. Improvements To Lexical Fast Match
The fast matcher can be improved by making it less sen-

sitive to the errors made by the letter recognizer. We found
that the letter recognizer is less accurate for the first and last
letters, probably because people speak differently as they
begin and end a string of letters. By skipping the first and/or
last letters when creating the class tree key, the fast matcher
will ignore mistakes made at these positions, leaving it to
the more accurate rescoring stage to resolve any differences.

Rather than skipping just the last letter, we also tried
truncating after 7 letters. In addition to tolerating mistakes
at the ends of spelled names, this also has the benefit of
greatly reducing the size of the class tree. Changing the
maximum key length from 10 to 7 reduces the number of
nodes in the tree from 115,000 to 72,000.

Insertions and deletions made by the letter recognizer
can lead to the wrong key for the fast matcher. We can make
the key tolerant of within-class insertions (e.g,b recognized
asb e) and deletions (e.g,b erecognized asb) by removing
duplicates of classes. For example, the last name “ramsetty”
would have key RAMFBI instead of RAMFBBBI. Cross-
class insertions and deletions will still result in the wrong
key. We depend on the n-best algorithm to provide a hy-
pothesis with no cross-class insertions or deletions.

These variations often result in a larger list of candidates
but are more likely to preserve the winner in the short list,
as shown in Table 3. All experiments reported in Table 3
use 5-grams with n-best set to 20. The first column gives

the maximum length of the key. Keys with more class let-
ters than the maximum are truncated, resulting in a smaller
tree at the expense of a larger list of candidates. The sec-
ond column specifies whether duplicate class letters are re-
moved. The third column indicates if the first class letter
was deleted and the fourth column indicates if the last class
letter was deleted.

Len Dup First Last Fast Avg Align Rescore

7 N N N 98.0 7.6 95.0 96.0

7 N Y N 98.2 12.7 94.2 95.6

7 N N Y 98.2 11.5 94.8 96.0

7 N Y Y 98.4 54.0 94.0 95.4

7 Y N N 99.2 11.4 96.6 97.6

7 Y Y N 98.4 29.6 95.4 96.6

7 Y N Y 99.2 29.0 96.4 97.4

7 Y Y Y 99.2 124.4 95.8 97.2

10 N N N 97.0 2.6 93.2 94.2

10 N Y N 96.8 9.3 92.4 93.8

10 N N Y 98.2 8.3 93.8 95.0

10 N Y Y 98.4 45.0 93.0 94.4

10 Y N N 97.2 8.0 94.6 95.6

10 Y Y N 97.2 28.1 94.2 95.4

10 Y N Y 98.6 27.2 95.8 96.8

10 Y Y Y 98.6 118.6 95.2 96.6

Table 3: Effects of Varying Key Length and Skipping

From the table, it can be seen that removing duplicates
and truncating after 7 class letters is advantageous. Remov-
ing the last class letter usually helps, but removing the first
class letter usually does not.

8.3. Merging Classes
The 8 classes listed in Table 1 were chosen based on

acoustic similarity. The only variation considered in this pa-
per was to merge the a-set with the e-set since confusion be-
tween these classes accounts for many errors. Table 4 gives
results for the original 8 class set and the reduced 7 class set
for the case when the letter recognizer used 5-grams with
n-best set to 20, the key length set to 7, and within-class
duplicates removed.

There is only one case in Table 4 where 7 classes led to
better results than 8 classes, and this minor gain comes at
the expense of greatly increasing the number of candidates
in the short list. However, the 7 class variation provides
some benefit when either the number of hypotheses or the
order of the language model is reduced. We also expect
that 7 classes might be required for tasks where the letter
recognition accuracy is lower.

First Last #cl Fast Avg Align Rescore

N N 7 99.4 66.2 96.4 97.2

N N 8 99.2 11.4 96.6 97.6

Y N 7 98.8 150.1 95.4 96.6

Y N 8 98.4 29.6 95.4 96.6

N Y 7 99.6 168.3 96.8 97.6

N Y 8 99.2 29.0 96.4 97.4

Y Y 7 99.6 466.6 95.0 96.2

Y Y 8 99.2 124.4 95.8 97.2

Table 4: Effect of Merging Classes

9. CONCLUSIONS

We have proposed a fast method to select a short list
of candidates from a large list of names used in a spelling
recognition task. For the best case, as shown in row 5 of Ta-
ble 3, the correct name is retained 99.2% of the time for an
average short list length of 11.4 and the overall system ac-
curacy was 97.6%. Compared to related systems, our two-
stage approach uses far less memory and cpu time. Hence
this approach lends itself well to a multiple channel im-
plementation on a memory-constrained hardware platform
such as the Lucent Speech Processing Solutions board.

10. ACKNOWLEDGMENTS

The authors acknowledge David Thomson and Rafid
Sukkar for helpful discussions, and Greg Szeszko for pro-
viding the initial set of acoustic models.

11. REFERENCES

[1] P. C. Loizou, A. S. Spanias, “High-Performance Al-
phabet Recognition,”IEEE Transactions on Speech
and Audio Processing,pp. 430-445, 1996.

[2] H. Hild and A. Waibel, “Recognition of Spelled
Names Over the Telephone,”Proceedings Fourth In-
ternational Conference on Speech and Language Pro-
cessing,pp. 346-349, 1996.

[3] G. Gravier, F. Yvon, G. Etorre and G. Chollet, “Di-
rectory Name Retrieval Using HMM Modeling and
Robust Lexical Access,”Proceedings IEEE Workshop
on Automatic Speech Recognition and Understanding,
pp. 558-565, 1997.

[4] K. Oflazer, “Error-Tolerant Finite-State Recognition
With Applications To Morphological Analysis and
Spelling Correction,”Computational Linguistics,pp.
73-89, 1996.

