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ABSTRACT

In this paper we study a new approach to processing
temporal information for automatic speech recognition
(ASR). Speci�cally, we study the use of rather long-
time TempoRAl Patterns (TRAPs) of spectral energies
in place of the conventional spectral patterns for ASR.
The proposed Neural TRAPs are found to yield signif-
icant amount of complementary information to that of
the conventional spectral feature based ASR system. A
combination of these two ASR systems is shown to re-
sult in improved robustness to several types of additive
and convolutive environmental degradations.

1. INTRODUCTION

1.1. Spectral features

Spectrum-based techniques form the basis of most fea-
ture extraction methods in current ASR. A drawback
of the spectral features is that they are quite sensi-
tive to changes in the communication environment e.g.
characteristics of di�erent communication channels or
environmental noise. Subsequently, recognizers based
on spectral features exhibit rapid degradation in per-
formance in realistic communication environments and
supplementary techniques need to be applied to address
this problem.

1.2. Temporal Processing

Many of the noise-robust techniques employ the tem-
poral domain. Some of these are reviewed in [7]. This
paper suggests an extreme position by challenging the
accepted concept of �nding acoustic correlates of pho-
netic categories in speech spectrum.

1.3. Phonetic Classi�cation using TRAPs

As an alternative to spectrum-based feature vectors we
have proposed in our recent work [8] the use of Tem-
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Figure 1: Temporal Paradigm for ASR

poRAl Patterns (TRAPs 1 ) for phonetic classi�cation.
In this technique, we substitute a conventional spectral
feature vector in ASR by a 1 sec long temporal vector
of critical band logarithmic spectral energies [6] from
a single frequency band (Fig 1). The phonetic class is
de�ned with respect to the center of this 101 point (at
10ms frame rate) temporal vector similar to our ear-
lier work on data-driven design of RASTA �lters [11].
The idea here is to capture the temporal evolution of
the band-limited spectral energy in a vicinity of the
underlying phonetic class.

In our earlier work [8] we have mainly examined a
special class of TRAPs called the Mean TRAPs. The
Mean TRAPs are data-driven templates obtained by
averaging 1 sec long temporal vectors for each of the
phonetic classes in each frequency band independently.
A simple correlation classi�er is then used to perform
the phonetic classi�cation of the incoming temporal
trajectories in each of the 15 critical frequency bands
using the respective Mean TRAPs. We demonstrated
that even with this rather simplistic approach it is pos-
sible to classify phonemes with reasonable accuracy
based on rather long temporal patterns of spectral en-
ergy in a single critical band. Subsequent combination

1TRAP stands for the TempoRAl Pattern



of results from individual frequency bands resulted in
performance close to that of the conventional spectral
based systems.

Neural TRAPs provide a generalization of the Mean
TRAPs and could provide means to improve the per-
formance of the TRAPs. In this work we examine the
Neural TRAPs and study their performance in several
noise environments.

2. EXPERIMENTAL SETUP

We have used two databases for our work, the OGI-
Stories corpus [4] and OGI Numbers corpus [5]. The
OGI Stories database consists of telephone quality con-
versational speech. A subset of approximately 2 hours
of phonetically-labeled speech from this corpus was
used for training the temporal classi�ers. The OGI
Numbers corpus consists of a set of continuous, natu-
rally spoken utterances collected from many di�erent
speakers over the telephone. Three independent sub-
sets of this database of approximately 1.7 hours, 0.6
hours and 0.2 hours respectively have been used in ex-
periments as described in the following sections. The
1.7 hours subset is the training set, the 0.2 hours sub-
set forms the cross-validation set on which the frame-
level errors for the 29 phonetic classes present in the
Numbers corpus are reported, and the 0.6 hours sub-
set (4670 words) comprises the test set on which the
word-level errors are reported.

The baseline system used is the standard hy-
brid hidden Markov model/multi-layer perceptron
(HMM/MLP) speech recognizer [3] from the Inter-
national Computer Science Institute (ICSI), Berkeley,
California, in which phonetic classi�cation is performed
by a single hidden layer MLP. The features used for
the baseline system consist of 8 PLP cepstral coe�-
cients [6] with utterance-based cepstral mean subtrac-
tion along with 9 delta and 9 acceleration coe�cients.
The input to the MLP consists of 9 frames of context
with the current frame at the center of this context win-
dow (234 dimensional input). The hidden layer has 500
units and the output of the MLP consists of estimated
posteriori probabilities of the 29 phonetic categories oc-
curring in the Numbers corpus. The baseline system is
trained on the 1.7 hours subset of the Numbers corpus.
This baseline system yields 21 % frame-level error and
6.5 % word-level error.

3. NEURAL TRAPS

Fig. 2 represents a single Neural TempoRAl Pattern
classi�er. As the name suggests a feed-forward multi-
layer perceptron (MLP) is used to classify the central
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Figure 2: Neural TRAP

frame of a 1 sec long (101 points) temporal trajectory in
each critical band. The temporal trajectory comprises
of logarithmic energies in the particular critical band.
To make the input representation robust to convolutive
channel distortions the mean is subtracted from the
available 1 sec trajectory. To compensate for the de-
crease in variance of the temporal trajectory commonly
observed in presence of additive environmental noise
conditions, each input 1 sec time-trajectory is normal-
ized to have unity variance. In order to de-emphasize
the contributions of the spectral energies towards the
edges of the time trajectory, each input pattern is fur-
ther weighted by a Hamming window as in the case of
Mean TRAPs [8].

System Frame error (%)
for each critical band

Mean TRAPs 78 - 81 %
Neural TRAPs 66 - 74 %

Table 3: Frame-level performance of di�erent TRAPs
on OGI Numbers corpus

Each Neural TRAP classi�er has 300 hidden units
and 29 outputs. It is trained on 2 hours of the OGI Sto-
ries corpus for 29 phonetic classes. The trained TRAPs
are tested on the OGI Numbers corpus. As seen from
Table 3 the performance of each of the sub-band Neu-
ral TRAPs is signi�cantly better than the performance
of the corresponding Mean TRAPs. Also the perfor-
mance of the individual TRAPs, though not too high,
is much better than chance (96.5% error for 29 classes).

It is interesting to see that based only on a 1 sec
time trajectory of spectral energy in a single critical
band, the performance of each Neural TRAP is approx-
imately 35% of the performance of the baseline system
which uses all spectral information and around 170ms
of temporal information.



System Clean Convolutive Sine 1KHz.
Frame Word Frame Word Frame Word

Baseline 21 6.5 22.5 7 42.57 36.9
TRAP 20 8.8 21.1 10.2 29.15 18.1

Table 1: Frame and Word errors (%)

System Clean White Pink Factory Engine

Frame Word Frame Word Frame Word Frame Word Frame Word
Baseline 21 6.5 41.59 23.4 49.39 33.5 42.15 24.3 41.56 24.9
TRAP 20 8.8 37.52 25.1 45.81 33.9 39.21 26.6 34.25 21.6
Combined 17.8 5.8 34.71 20.9 44.21 29.9 36.41 22.4 32.84 18.9

Table 2: Frame and Word errors (%). Engine refers to destroyer-engine noise.

3.1. Combination of TRAPs.

Each input speech frame is classi�ed by 15 Neural
TRAPs corresponding to the 15 critical bands [6].
To obtain a single classi�cation result we use a MLP
for combining the outputs obtained from each of the
15 TRAPs as in our previous work on multi-band
ASR [10]. The input to the combining network is
the concatenated vector of the class conditional log-
likelihoods of the 29 phonetic classes from each of the
15 TRAPs (435 dimensional input). The network has
a single hidden layer of 300 units and 29 outputs which
represent the merged estimate of the class posteri-
ori probabilities. The combination network thus has
139200 parameters which is comparable to the 131500
parameters of the baseline system. The combiner net-
work is trained on 1.7 hours subset of the Numbers
corpus.

Table 1 compares the frame error and word error
rate of the baseline system and the Neural TRAP-based
recognizer. It is seen that on the frame level, the perfor-
mance of the Neural TRAP-based recognizer is better
than that of the baseline (spectrum-based) recognizer.
However, on the word level, the baseline recognizer per-
forms better than the Neural TRAP-based recognizer.

3.2. Combination of the Baseline and TRAP-

based Recognizer

An analysis of the frame errors indicates that 40% of
the errors made by the baseline system would be cor-
rected by the TRAP-based system (i.e. the TRAP-
based system makes the correct decision) while 38%
of the TRAP-based system errors are not being made
by the conventional system. This shows that both
systems yield signi�cant complementary information.
Such a situation makes both systems good candidates
for merging [9].

Based on this observation we combined the outputs
of the baseline system and the TRAP-based recognizer
at the frame level using a MLP classi�er. This classi�er
had 58 inputs (concatenation of the 29 class-conditional
log-likelihoods from each of the systems), 500 hidden
units and 29 outputs. This combiner is also trained on
the 1.7 hours subset of the Numbers corpus. From Ta-
ble 2 it is seen that the combination results in improved
performance as compared to the baseline system both
at the frame-level and word-level.

It should be noted that the results on the clean
speech that we are reporting in Tables 1, 2 for Neural
TRAPs are slightly di�erent than the results reported
in [8] since in our current system we do additional input
mean and variance normalization. This normalization
results in slight degradation in performance on clean
data but makes the system more robust in presence of
noise.

4. EXPERIMENTS IN NOISE

To test the performance of the TRAP-based system in
degraded environments we tested it on speech arti�-
cially degraded by various types of noise. The recog-
nizer was always trained only on the clean speech.

4.1. TRAPs in convolutive noise

The baseline system uses utterance-based cepstral
mean subtracted features which is known to be robust
to convolutive noise. TRAPs should also be robust to
such distortion because of local (1 sec) input mean re-
moval. To simulate convolutive distortion the test data
was pre-processed by a pre-emphasis �lter.

The performance of the baseline system without
cepstral mean subtraction degrades rapidly from 21.8%
frame error and 8% word error on clean test data



to 33.3% frame error and 16% word error on pre-
emphasized data. On the other hand as indicated in
Table 1, both the baseline system with mean subtrac-
tion and the TRAP-based system show only a slight
degradation in performance to such convolutive distor-
tion as compared to the clean test case. This demon-
strates an inherent robustness of TRAPs to convolutive
channel distortion.

4.2. TRAPs in additive sinusoidal noise

We tested the performance of the TRAP recognizer on
additive sinusoidal noise at 1 KHz. and SNR 10dB.
From Table 1 it is seen that the TRAP-based system
results in half the error rate as compared to the baseline
system.

4.3. TRAPs in realistic additive noise

Realistic noises (white, pink, factory and destroyer-
engine) from the NOISEX-92 database were added to
the data. Table 1 compares the performance of the
baseline, TRAP-based and combined systems in pres-
ence of these noise conditions. It is seen that the
TRAP-based system consistently gives reduced frame
error as compared to the baseline system and gives
quite comparable performance on the word level. The
combined baseline and TRAP system results in sig-
ni�cant improvement in both the frame and the word
level performances. Speci�cally, the combined system
results in around 15% reduction in frame error and 13%
reduction in word error (average reduction on the four
noise conditions) as compared to the baseline system.

5. DISCUSSION

The present work represents a continued e�ort in the
direction of moving away from the conventional across
spectrum processing technique towards that of across

time processing. This e�ort can be considered as an
extreme generalization of multi-band ASR [1, 10, 2].
We present a complete ASR system based on this con-
cept of independent processing of temporal trajectories
and show that the system is competitive with the cur-
rent conventional ASR system. We demonstrate the
potential robustness of this system in noisy environ-
ments. We also show that the complementary infor-
mation provided by the TRAP system can be further
used to improve robustness of ASR by using the TRAP
system in combination with the conventional system.
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