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ABSTRACT
In this paper the subband decomposition of a single channel
image restoration problem is examined. The decomposi-
tion is carried out in the image model (prior model) in order
to take into account the frequency activity of each band of
the original image. The hyperparameters associated with
each band together with the original image are rigorously
estimated within the Bayesian framework. Finally, the pro-
posed method is tested and compared with other methods
on real images.

1. INTRODUCTION

A standard formulation of the image degradation model is
given in lexicographic form by [1]

g = Df +w; (1)

where thep � 1 vectorsf , g, andw represent respectively
the original image, the available noisy and blurred image
and the noise with independent elements of variance�2

w =
��1, andD represents the known blurring matrix. The im-
ages are assumed to be of sizen� n, with p = n� n. The
restoration problemcalls for finding an estimate off given
g,D and knowledge aboutw and possiblyf (see Chapter 1
in [7] ).

Smoothness constraints on the original image can be in-
corporated under the form of

p(f j�) / �p=2 expf�
1

2
� k Cf k2g; (2)

whereC is the Laplacian operator.
Then, following the Bayesian paradigm it is customary

to select as the restoration off, the imagef(�;�) defined by

f(�;�) = argfmin
f

[�k Cf k2 +� k g�Df k2 ] g

= argfmax
f

p(f j�)p(gjf ; �)g; (3)
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where from Eq. 1 we have

p(gjf ; �) / �p=2 expf�
1

2
� k g �Df k2g : (4)

An important problem arises when� and/or� are un-
known. Much interest has centered on the question of how
these parameters should be estimated (see [6], [9]). It is
widely accepted that the hyperparameter in the image model
(�) should be adapted to the local image characteristics.

The application of multichannel techniques to single chan-
nel restoration problems using a subband decomposition was
proposed in [2] and [3] using the framework developed in
[8].

In this paper we examine the subband decomposition of
the quadratic image model given in Eq. 2. Since by perform-
ing a subband decomposition we are extracting different fre-
quency regions (channels) of an image, the process of asso-
ciating a different image hyperparameter to each subband of
the image model becomes equivalent to assigning different
hyperparameters to different frequency bands in the image.
These hyperparameters will reflect then the activity of that
band in the original image. We show how the estimation
of these parameters can be carried out within the Bayesian
image restoration paradigm.

The rest of the paper is organized as follows. In sec-
tion 2 the image and noise models are defined in order to
apply the Bayesian paradigm. For those image and noise
models, the estimation of the hyperparameters and the orig-
inal image is performed in section 3. Finally, in section 4
experimental results are shown and section 5 concludes the
paper.

2. IMAGE AND NOISE MODELS

A simple way to incorporate the smoothness of the object
luminosity is to model the distribution off by Eq. 2. It is
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Figure 1: Four-channel 2-D decomposition.

important to note that this model is a simultaneous autorre-
gression (SAR) ([10]) and is characterized by

(Cf)i = �i; (5)

where the�is are independentN (0; ��1).
A careful examination of Eq. 5 shows that this expres-

sion is not true for real images. The spectrum ofCf is not
normally flat and the energy in each frequency is not the
same (equal to1=�). Obviously the image model is just a
simple approximation.

Let us now considerz = Cf and perform a multichan-
nel decomposition on it. Letwl andwh be1 �D quadra-
ture mirror filters (QMF) based on the orthonormal wavelet
bases with compact support ([4]), so that one set of coef-
ficients may be used to defined the other ([11]). Then, the
subband decomposition ofz can be calculated as described
in Fig. 1.

We note that

I =Wt
llWll +W

t
hlWhl +W

t
lhWlh +Wt

hhWhh; (6)

whereWuv with u; v 2 l; h are the[(n=2)� (n=2)] �
[n� n] matrices used to obtain the bandszuv (see Fig. 1)
andt denotes transpose. It is important to observe that now
Wt

uvWuvz contains information on some part of the spec-
trum ofz.

Let us consider the quadratic form defining the image
model; we have

� k Cf k2 = �f tCtCf

= f tCt(�Wt
llWll + �Wt

hlWhl +

�Wt
lhWlh + �Wt

hhWhh)Cf : (7)

Now, in order to adapt the image model, and therefore
have a hyperparameter for each of the decomposed chan-
nels, we define the following image model

p(f j�) /
1

Zprior(�)
expf�

1

2

X
u;v2fl;hg

�uv kWuvCf k
2g;

(8)

where� denotes the vector(�ll; �hl; �lh; �hh) and

Zprior(�) = jP(�)j�1=2; (9)

whereP(�) =
P

u;v2fl;hg �u;vC
tWt

uvWuvC.
Note that the model we have just proposed can be ex-

tended to a4i-channel decomposition. However, for nota-
tional simplicity, we will only use a4-channel decomposi-
tion. We also note that the image model we are proposing
allows the use of the same hyperparameters for several sub-
bands.

Let us now examine how to estimate the unknown pa-
rameters and perform the restoration in the coming section.

3. BAYESIAN ANALYSIS

The steps we follow in this paper to estimate the hyperpa-
rameters and the original image are

Step I: Estimation of the hyperparameters

�̂ = (�̂ll; �̂hl; �̂lh; �̂ll) and�̂ are first selected as

�̂; �̂ = argmax
�;�

Lg(�; �) = argmax
�;�

log p(gj�; �); (10)

wherep(gj�; �) =
R
f
p(f j�)p(gjf ; �)df .

Step II: Estimation of the original image

Once the hyperparamenters have been estimated, the es-
timation of the original image,f(�̂;�̂), is selected as the im-
age satisfying

f(�̂;�̂) = argmin
f

X
uv2flhg

�̂uv kWuvCf k
2 +�̂ k g�Df k2

(11)
Note that we are obtaining the maximum likelihood esti-

mates of the hyperparameters and themaximum a posteriori
(MAP) estimate off . Furthermore, although steps I and II
are separated, the iterative scheme proposed next performs
both estimations simultaneously.

The estimation process we are using could be performed
within the so called hierarchical Bayesian approach (see [9])
by including hyperpriors on the unknown hypervector�̂ and
hyperparameter̂�. However, the possibility of incorporat-
ing additional knowledge on them by means of gamma or
other distributions will not be discussed here (see [9]).

Differentiating�2Lg(�; �) with respect to� and� so
as to find the conditions which are satisfied at the maxima
we have

kWuvCf(�;�) k
2 +trace[Q(�; �)�1CtWt

uvWuvC] =

trace[P(�)�1CtWt
uvWuvC] for u; v 2 fl; hg (12)

k g �Df(�;�) k
2 +trace[Q(�; �)�1DtD] = p=�; (13)



whereQ(�; �) =
P

u;v2fl;hg �u;vC
tWt

u;vWu;vC+DtD.
Let us examine the use of the EM-algorithm [5] with

X t = (f t;gt) andY = g = [0 I]tX to iteratively in-
creaseLg(�; �). The application of the EM-algorithm to
our problem produces Eqs. 12 and 13 where the old val-
ues of the hyperparameters are used on the left hand side of
these equations to obtain the new ones on their right hand
side. Unfortunately, these equations are highly nonlinear.

Let us, however, consider first the iterative EM equa-
tions corresponding to using one hyperparameter for the im-
age model (�) and one for the noise (�) (see [9]). We have

�
1

�

�
new

=

�
1

p

�
k Cf(�;�) k

2 +

trace[(�CtC+ �DtD)�1CtC]
	 ]

old
(14)�

1

�

�
new

=

�
1

p

�
k g�Df(�;�) k

2 +

trace[(�CtC+ �DtD)�1DtD]
	 ]

old
; (15)

wheref(�;�) has been defined in Eq. 3 and[ ]new and[ ]old
represent the evaluation of the expressions for the new and
old values of� and�, respectively. We notice that these
equations correspond to the application of a gradient de-
scendent method on1=� and1=�.

Let us adapt this method to the multichannel problem.
Multiplying and dividing the right hand side of Eq. 12 by
�uv we have

1

p(�uv)

�
kWuvCf(�;�) k

2 +

trace[Q(�; �)�1CtW t
uvWuvC]

�
= 1=�uv; (16)

wherep(�uv) = �uvtrace[P(�)
�1CtWt

uvWuvC] (we
have removed the dependency on� of p(�uv) to simplify
the notation). Notice thatp(�uv) = p if we have only one
image parameter and that

P
u;v2fl;hg p(�uv) = p.

Then, we can use the following equations to estimate the
hyperparameters, where the old values are used in the right
hand side of the equations to obtain the new ones on the left
hand side�

1

�uv

�
new

=

�
1

p(�uv)

�
kWuvCf(�;�) k

2 +

trace[Q(�; �)�1CtWt
uvWuvC]

� ]
old

for u; v 2 fl; hg (17)�
1

�

�
new

=

�
1

p

�
k g �Df(�;�) k

2 +

trace[Q(�; �)�1DtD]
	�

old
(18)

This method is again a gradient descendent one. We
have used it in our experiments and have not observed any

dB Method Iterations ISNR ��1

10 MLE 40 7.6038 184.98
1 param. 30 7.2863 214.03
2 params. 50 7.2844 214.09
4 params. 60 7.2241 213.95

20 MLE 35 7.9889 49.84
1 param. 35 8.8162 63.64
2 params. 50 8.8086 63.68
4 params. 70 8.2787 64.73

30 MLE 30 6.2049 3.91
1 param. 35 8.8181 6.37
2 params. 41 8.8006 6.42
4 params. 90 9.1402 6.57

Table 1: Iterations required, ISNR, and noise variance esti-
mations for the “Cameraman” image and different SNRs.

convergence problem, however, it would always be possible
to use smaller steps as to guarantee convergence.

4. EXPERIMENTAL RESULTS

In order to show the behavior of the proposed algorithm,
we have used the original256 � 256 “Cameraman” im-
age, blurred by a motion blur over 9 pixels. It was also
degraded by additive Gaussian noise to achieve10, 20 and
30dB SNR (noise variances of��1 = 216:1, ��1 = 64,
and��1 = 6:25, respectively). For a comparison, we have
also applied the maximum likelihood restoration method to
these degraded images.

For the purpose of objectively testing the performance
of the image restoration algorithms, the Improvement in
Signal to Noise Ratio (ISNR) will be used. This metric is
given by

ISNR = 10 log10

8><
>:

P
m;n [f(m;n)� g(m;n)]

2

P
m;n

h
f(m;n)� f(�̂;�̂)(m;n)

i2
9>=
>;

The values of ISNR, the required number of iterations
needed to achieve convergence in parameter estimation, and
the corresponding values of the estimated noise variance are
shown in Table 1. We have included the results obtained
by maximum likelihood and the proposed algorithm using
only one parameter for all the bands of the image; using
two parameters, one for thell band, and a different one for
the lh, hl, andhh bands. The last row of every sub-table
contains the result obtained using a different parameter for
each subband. The set of coefficients used is DAUB4.

From this table we can see that the proposed method re-
sults in better estimates of the noise variance, very close to
the real value, giving less noisy images than the maximum
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Figure 2: (a) Original “Cameraman” image. (b) Noisy-
blurred image for 9-point motion blur at 30dB. (c) Maxi-
mum likelihood restoration. (d) Restoration obtained with
the proposed method.

likelihood method. We can see that the ISNR is in general
better for the proposed method. The10dB case is the only
one where maximum likelihood gives better results in terms
of ISNR, but the images obtained using the proposed algo-
rithm appear to be better from a subjective point of view
(visual inspection).

Fig. 2 shows the original “Cameraman” image, the de-
graded image at 30 dB, the restoration obtained by maxi-
mum likelihood and the restoration obtained with the pro-
posed method using four prior-model parameters, a differ-
ent one for each band. We can see that the solution pro-
posed gives smoother solutions but the noise is much better
removed.

5. CONCLUSIONS

In this paper we have proposed the decomposition of the
single channel image restoration problem in order to take
into account the frequency activity in each subband of the
decomposed image. The Bayesian framework has been used
to estimate both the parameters and the restored image.

The results obtained using the proposed method have
been compared to those obtained by the maximum likeli-
hood restoration method. The proposed method results in

better estimates of the parameters involved in the problem,
giving less noisy results. We have also used objective met-
rics to measure the quality of the resulting restorations. In
general better solutions are obtained with the proposed ap-
proach, than with the maximum likelihood method.
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