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ABSTRACT

Rapid prototyping and development of in-circuit and FPGA-based
emulators as key accelerators for fast time-to-market has resulted
in a need for fast error correction mechanisms. The fabricated
or emulated prototypes upon error diagnosis require quick and as
much as possible flexible engineering change (EC). However, this
problem has recently initiated research activity mainly in the logic
synthesis domain. We introduce the first set of EC protocols for
behavioral synthesis. The protocols support both the pre- and post-
processing EC paradigms. In addition, instead of developing spe-
cial algorithms for EC which is the adopted research model, as
a key contribution, we show that using protocols which facilitate
constraint manipulation of the initial design specification there is
no need for development of specialized EC algorithms. The EC
process is performed using the standard optimization algorithms
on the modified design. Nevertheless, as shown on a number of
behavioral synthesis tasks including: resource assignment, design
partitioning, and operation scheduling, the approach provides vari-
able and guaranteed flexibility for incremental synthesis with min-
imal hardware overhead.

1. INTRODUCTION

Rapid prototyping and development of in-circuit and FPGA-based
emulators has been recently adopted as the key accelerating tech-
nology for fast time-to-market. However, upon development, fab-
ricated or emulated prototypes are yet to be modified due to an
extensive debugging process. The modifications succeed the di-
agnosis of a smaller number of design errors. While in the case
of FPGA-based emulators or designs, engineering change (EC)
requires a time-consuming update [Fan97], in the case of fabri-
cated circuits, the modifications are performed using mask updat-
ing, the Focused Ion Beam apparatus for cutting and implanting
new wires on a die, and Electron Beam Lithography for implanting
logic structures into an already fabricated design [Tho68]. Since
both rewiring and logic post-implanting are expensive and time-
consuming processes, the design requirements for EC should en-
able as much as possible flexibility for design update. There are
two fundamental approaches to EC: pre-processing where certain
amount of logic or programmable interconnects (with no effect on
the design functionality) is augmented into the design before fab-
rication, and/or post-processing where knowing the correct func-
tionality of the design, the fabrication is minimally altered such
that the error is corrected. While the first technique has a diffi-
cult goal to anticipate which extra hardware might be useful in the
case of an error, the second one has a difficult task to use a limited
amount of resources to update the design with minimal hassle.

The problem of EC has initiated research activity mainly in
the logic synthesis CAD domain. However, due to the increasing
complexity of behavioral specifications, designers are commonly
faced with behavioral level modifications which are by no means
minor at the physical level of abstraction. In this paper, we intro-
duce the first set of engineering change protocols for behavioral
synthesis. Achieving flexibility for EC at this stage of the design

can enable more economic modifications at lower design levels
[Pra94]. As a key novelty, we present an approach to EC which
facilitates the idea of constraint manipulation. Such approach fo-
cuses on intelligent modification of the initial design specification
which results in application of the original optimization algorithm.
The key advantage is that this algorithm would have been used,
if no flexibility for EC was ever requested. That is in oppose to
the currently adopted research model for EC problems which, by
default, seeks for new synthesis solutions.

The developed protocols (input modification strategies) sup-
port both the pre- and post-processing EC paradigms. In the pre-
processing step, the design specification is embedded with extra
constraints. After the optimization algorithm is applied to such
input, these constraints impose a set of additional functionalities
that the design can also perform. This technique for enabling EC
provides variable and guaranteed flexibility for incremental syn-
thesis with overhead bound by the efficiency of the optimization
algorithm. To facilitate this flexibility, in the post-processing step,
again, the output (optimized behavioral specification) is modified
in such a way that the initial optimization algorithm can be now ap-
plied only to the selected area where the error is diagnosed. In the
remainder of this paper, this high level description of the approach
is explained in more technical detail on three behavioral synthesis
tasks and a set of benchmarks extracted from real-life designs.

2. RELATED WORK
A number of developed algorithmic techniques for EC facilitate
rectifying logic networks [Wat91, Kha96]. Different approaches
to EC for logic synthesis have been developed [Bra94, Swa97].
Lin et al. have introduced alternative wires as a solution to the EC
problem [Lin95]. They have also shown that alternative wires may
aid optimization algorithms for routing in FPGAs. A number of
systems targeting ASIC design have been developed for incremen-
tal synthesis from the RT-level to the gate-level [Pra94]. Fang et
al. have developed an RT-level EC method that supports on-line
debugging for FPGA-based logic emulators [Fan98]. Buch et al.
have applied an EC technique to a different problem: optimization
of logic networks for low-power [Buc97].

3. HARDWARE AND COMPUTATIONAL MODEL
We have selected as our computational model the synchronous
data flow (SDF) model [Lee87]. The SDF is a special case of data
flow in which the number of data samples produced or consumed
by each node on each invocation is specified a priori. Nodes can
be scheduled statically at compile time onto programmable pro-
cessors. We restrict our attention to homogeneous SDF (HSDF),
where each node consumes and produces exactly one sample on
every execution. The HSDF model is well suited for specifica-
tion of single task computations in numerous application domains
such as DSP, communications, and multimedia. The syntax of a
targeted computation is defined as a hierarchical control-data flow
graph (CDFG) [Rab91]. The CDFG represents the computation as
a flow graph, with nodes, data edges, and control edges. The se-
mantics underlying the syntax of the CDFG format, as we already
stated, is that of the SDF model.



4. THE GLOBAL ENGINEERING CHANGE APPROACH
Behavioral synthesis transforms a given behavioral specification
into an RT-level description. The research work in behavioral syn-
thesis encompasses a variety of tasks, such as scheduling, allo-
cation, binding, partitioning, module selection, and transforma-
tions. An overview of existing synthesis techniques can be found
in [Gaj92, DeM94]. We demonstrate the developed EC paradigm
only for several synthesis tasks: resource allocation and assign-
ment [Pau89, Kur87, Sto89], operation scheduling [Pau89], and
partitioning [Lag91].

The developed EC paradigm can be applied to any of the syn-
thesis tasks as follows. In the pre-processing step, as shown in
Figure 1, the behavioral design descriptionBD is augmented with
additional design constraints (BDa). The application of the op-
timization algorithm toBDa provides a solutionOptDa that can
satisfy both the original and EC-targeted constraints. For example,
in the case of register assignment, i.e. graph coloring, the addi-
tional constraints are modeled as new edges and nodes. The addi-
tional design constraints can be focused towards a particular type
of an error, augmented to provide a guaranteed flexibility for EC
after an arbitrary error is diagnosed, and random. In all cases, the
trade-off of having significant design flexibility with respect to a
small hardware overhead can be tuned according to the designer’s
needs. A correction in the optimized design is performed by ma-
nipulating the constraints that are additionally augmented into the
design. Methods that facilitate constraint manipulation have been
already used for other VLSI optimization tasks [Koi94].

In post-processing for EC, upon detection and diagnosis of a
functional misbehavior, the error is corrected in the initial design
specificationcBD. The optimized designOptDa is altered to sat-
isfy the corrected functional behavior. The goal is to change min-
imally the optimized designOptDa, while achieving the desired
modification of its functionalitycOptDa.

We have developed a method which searches for the best de-
sign alteration iteratively until the desired modification is not ac-
complished with minimal hassle. In the first step of each iteration,
the optimized design specificationOptDa is partitioned into two
parts, partOptDA

a , where the design changes should be located,
and partOptDB

a , which should be left intact by the modification
procedure. In order to reduce the number of iterations, both parts
are selected using a modified binary search of the solution space
domain. In the next step, the constraints of partOptDB

a are com-
pressed (creatingOptDB

ac) using protocols specific to the problem
domain (details of several protocols are presented in the Section 5).
In the last step, the optimization algorithm is applied to the merger
of partsOptDA

a andOptDB
ac. Since the domain cardinalities of

OptDB
ac are much smaller than ofOptDB

a , the optimization al-
gorithm is applied mainly to the isolated (changed) partOptDA

a .
The increased flexibility for EC of the initial optimized specifi-
cationOptDa enables more efficient search for an optimization
solution (update)cOptDa that satisfies the correction constraints.

5. THE ENGINEERING CHANGE PROTOCOLS
We applied the proposed EC paradigms on three behavioral syn-
thesis tasks: register allocation and binding, operations schedul-
ing, and design partitioning. For each of these tasks, we have
defined their pre- and post-processing EC protocols, outlined ef-
fective algorithms for constraint manipulation, and presented the
approach on a second order Gray-Markel ladder filter.
5.1. Register Allocation and Binding
Values that are generated in one control step and used in a later step
must be stored in a register during the intermediate control step

transitions. A variable islive between the time it is generated (writ-
ten) and the last use (read) of it. This interval is called thelifetime
of the variable. Two variables whose lifetimes do not overlap can
be stored in the same register. The interval graph [DeM94] can be
constructed as follows. For each variable, a node is made in the in-
terval graph. Two nodes are connected if the lifetimes of the corre-
sponding variables overlap. Register allocation can be performed
by coloring the interval graph. The GRAPH K-COLORABILITY
problem is solvable in polynomial time forK = 2, but remains
NP-complete for all fixedK � 3 [Gar79]. The left-edge algo-
rithm [Kur87] is optimal only for the interval graphs constructed
from CDFGs with no loops.

We assume that in the design specification two types of errors
may occur. The first type of errors are the ones where a variableV
(with a lifetime [CS

V ; C
E
V ]) is not used as an operand in an opera-

tion Oi that is out of the range(COi > CE
V ) of the preliminarily

specified lifetime ofV . Such error is modeled by adding edges
to the interval graph. The procedure that we used to add edges of
type-I for flexibility in EC is presented in Figure 1. The goal of this
procedure is heuristically defined and targets expansion of vari-
ables with short lifetimes. GivenM , the maximal number of alive
variables at any control stepCi (M = max(AliveV ars(Ci); i =
1; : : : ; jCj)), the procedure expands the lifetime of a variable if its
expansion does not increase the number of alive variables at any
control step overM � 1. In addition, at each control stepCi,
M �1�AliveV ars(Ci) variables with the shortest lifetimes can
be expanded for a single step. In Figure 2, it is shown how the life-
times of variablesA1; C1; A5; A3; C2; andC3 (bold edges in the
CDFG and interval graph) are expanded. Although no overhead
occurred, as shown in Figure 5, such register assignment can be
used to resolve a number of corrections.

M = max(AliveV ars(Ci); i = 1; : : : ; jCj)
Repeat
For eachcontrol stepCi
Subset of variablesW = fVi; C

E
Vi

= Ci�1g

Select subsetWk 2W of K < M � 1� AliveV ars(Ci)
variables with shortest lifetimes
For eachVi 2 Wk

CE
Vi

= Ci
until no more edges of type-I can be added

Figure 1: Procedure used to embed edges of type-I into a CDFG.
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Figure 2: An example of addition of type-I constraints to the graph
coloring problem for EC.

The second type of errors are the ones where entire operations
(variables) are added to the spec. If such an operation is added



at the part of the interval graph where a maximal clique occurs,
the EC process would require an addition of a new register and/or
rescheduling. While the first type of a consequence can be trivially
solved, the second one requires more attention.

To enable effective rescheduling, we identify and/or enable tu-
ples of variables which can switch their registers arbitrarily. For
example, consider two adjacent nodesA andB. If the sets of ad-
jacent nodes toA andB are identical then nodesA andB can be
colored with colorsC1 andC2 orC2 andC1 respectively in any
valid coloring of the graph. At the time of correction, this prop-
erty can be used for faster minimal-hassle graph recoloring. We
have used the lsII [Kir98gc] graph coloring algorithm modified to
facilitate only the local changes enabled for EC.

The procedure which augments type-II edges into the graph
coloring problem is outlined using the pseudo-code in Figure 4.
The goal of this procedure is to involve as many as possible vari-
ables to become part of tuples for arbitrary coloring. The pro-
cedure initially sorts the set of control steps in descending order
of the number of alive variables. Then for each control stepCi
it identifies the variables which constitute a clique (its cardinality
is AliveV ars(Ci)). The neighborhood of the clique is analyzed
whether it has a good potential for embedding edges of type-II.
“Good potential” is heuristically defined with a bound on the num-
ber of edges adjacent to the nodes in the clique that has to be added
to the graph in order to enable validity of arbitrary coloring permu-
tation of the clique. In addition, for each control step, the added
edges should not increaseAliveV ars(Ci) aboveM . The bound
M can be increased if the designers decide to include extra EC
registers.
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Figure 3: An example of addition of type-II constraints to the
graph coloring problem for EC.

Finally, to identify all pairs of adjacentK-tuples of nodes
which can be arbitrarily colored withK colors, we assign weights
to edges in the interval graph. The weight for an edge between
nodesA andB is equal to the sum of number of nodes which are
adjacent to one but not both nodesA andB. Next, all edges with
weights greater than some predetermined threshold value� are re-
moved from the graph. For each edgeEA;B;W (EA;B) < �, we
add a set of edgesE+ to nodesA anB such that can be arbitrarily
colored. Of course, the addition of each edgeE 2 E+ is bounded
by the increase ofAliveV ars(Ci) beyondM for any control step
Ci. An example of addition of such edges is shown in Figure 3.
Pairs of nodesfIN;A1g, fA1; C1g, fA3; C2g, andfA7; C4g
are enabled for arbitrary colorability by addition of edges drawn

in bold in the appropriate interval graph.

SortCS = Sort(C) according to ascendingAliveV ars(Ci)
M = max(AliveV ars(Ci); i = 1; : : : ; jCj)
For eachcontrol stepCSi and its cliqueCL
Find a set of edgesE+ necessary to be added to all nodesVi 2 CL
such that CL can be arbitrarily colored.
For eachedgeEi 2 E+
If for anyCi addition ofEi results inAliveV ars(Ci) < M break

If nobreak
Add each edgeEi 2 E to the interval graph
Remove nodes inCL and adjacent edges fromIntervalGraph

For eachedgeEi 2 IntervalGraph between nodesA andB
If jNei(A) =2 Nei(B) [Nei(B) =2 Nei(A)j > �
Add edgesA�Nei(B) =2 Nei(A) [B �Nei(A) =2 Nei(B)
if none of them results for anyCi thatAliveV ars(Ci) < M

Figure 4: Procedure used to embed edges of type-I into a CDFG.

Once the error is detected its correction requires updating the
optimized spec. We have developed an approach which iteratively
identifies a locality around the zone that needs to be updated, com-
presses the interval graph that is out of the identified locality, and
performs the optimization algorithm on the compressed and up-
dated spec. The advantage of this approach is that it tries to modify
the smallest part of the spec while quickly searching for solution
only on the part of the spec which is updated.
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Figure 5: Individual steps in the post-processing for EC: graph
bipartitioning, subgraph compression, and graph coloring on the
compressed and updated interval graph.

The first step in the post-processing function performs simple
binary search on the size of the subgraphB which will be left in-
tact by the EC process. The linear parameter on which we perform
the binary search is the maximal distance from any update on the
interval subgraphA to an arbitrary node in the subgraph which will
be changed. The second step involves compression of constraints
in subgraphA. The compression is conducted in such a way that
nodes colored with the same color in the optimized solution are
merged. The new node inherits all edges adjacent to the parent
nodes. An example of such merger is shown in Figure 5 where
nodes which are merged are specified as labels to each node. In
the same figure, the shaded area that is selected to be updated is
left intact while the remainder of the interval graph is compressed.
In the last step a graph coloring algorithm is applied to the com-
pressed and updated interval graph.



5.2. Operation Scheduling and Design Partitioning
For the sake of brevity, in this section we briefly outline the main
properties of developed protocols for pre- and post-processing for
EC of operation scheduling and design partitioning solutions. The
developed protocols are discussed in detail in [Kir98r].

Constraints are augmented in operation scheduling specs us-
ing aK-input single output additional computation unit. A chain
OADD ofN successive operations are added to the CDFG in order
to force a critical path of lengthN . Next, at control steps at which
a particular computation unitU is desired to be idle, operations of
typeU are attached to the augmented chainOADD as shown in
Figure 6. ObviouslyK is equal to the maximum number of idle
units at a single control step. In order to guide the process of forc-
ing particular units to be idle at particular control steps, we used a
heuristic identical to the one presented in previous subsection.

The procedure for compression of constraints which should be
left intact after the update of operation scheduling is performed in
the following way. AK-input single output computation unit is
added to the CDFG. The chainOADD of N successive operations
is added to the CDFG in order to force a critical path of length
N . Scheduled operations of the subgraphB are connected to the
chainOADD in a way that any algorithm can retrieve, as trivial,
only one solution for scheduling the subgraphB. An explanatory
example of such modification is shown in Figure 6.
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Figure 6: Constraint augmentation and subgraph compression for
pre- and post-processing for EC of operation scheduling.

For partitioning, the standard constraint addition techniques
such as edge augmentation and node merging (to force appear-
ance of particular nodes in the same partition) can also be applied.
However, the constraint compression protocol is specific to the na-
ture of the partitioning problem. For each partitionP , all nodes
V that are part of the intact subgraphV 2 B, are merged into a
single nodeVP in a way that each nodeVi =2 P , if connected to at
least one node inP is assigned a single edgeEVi;VP with weight
W (EVi;VP ) =

P
Vj2B\P

W (EVi;Vj ).

6. EXPERIMENTAL RESULTS
We present the experimental data only for the EC of graph coloring
related problems [Kir98r]. Table 6 shows in the first four columns
the public domain benchmark, its number of nodes, edges, and
chromatic number. In the next three columns it shows how many
edges have been added for EC, the overhead in registers, and the
percentage of corrected errors within a locality that equals 2% of

the overall instance node cardinality. The errors, including adding
1% nodes and 0.1% edges, were generated randomly. Each in-
stance was augmented with edges and corrected according to the
protocols presented in subsection 5.1.

Original Instance � Add Edge EC
Instance Vertices Edges Edges Overhead ratio

fpsol2.i.1.col 496 11654 65 496 0 99%
fpsol2.i.2.col 451 8691 30 451 0 99%
fpsol2.i.3.col 425 8688 30 425 0 97%
inithx.i.1.col 864 18707 54 864 0 97%
inithx.i.2.col 645 13979 31 645 0 96%
inithx.i.3.col 621 13969 31 621 0 95%
mulsol.i.1.col 197 3925 49 197 0 97%
mulsol.i.2.col 188 3885 31 188 1 100%
mulsol.i.3.col 184 3916 31 184 1 99%
mulsol.i.4.col 185 3946 31 185 0 92%
mulsol.i.5.col 186 3973 31 186 0 89%
zeroin.i.1.col 211 4100 49 211 0 93%
zeroin.i.2.col 211 3541 30 211 0 93%
zeroin.i.3.col 206 3540 30 206 0 91%

Table 1: Success of error correction for coloring register allocation
instances augmented with constraints for EC.

7. CONCLUSION
We have introduced the first set of protocols for behavioral synthe-
sis EC which support both the pre- and post-processing paradigms.
As a key contribution, our approach to EC does not rely on devel-
oping special EC algorithms. It manipulates constraints to achieve
design flexibility. The actual EC process is performed using stan-
dard optimization tools on the modified design. As shown on a
number of behavioral synthesis tasks including: resource assign-
ment, design partitioning, and operation scheduling, the approach
provides variable and guaranteed flexibility for EC with minimal
hardware overhead.
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